Viral respiratory infections and the oropharyngeal bacterial microbiota in acutely wheezing children

Autoři: Leah Cuthbertson aff001;  Stephen W. C. Oo aff002;  Michael J. Cox aff001;  Siew-Kim Khoo aff002;  Des W. Cox aff002;  Glenys Chidlow aff005;  Kimberley Franks aff002;  Franciska Prastanti aff002;  Meredith L. Borland aff002;  James E. Gern aff008;  David W. Smith aff002;  Joelene A. Bizzintino aff002;  Ingrid A. Laing aff002;  Peter N. Le Souëf aff002;  Miriam F. Moffatt aff001;  William O. C. Cookson aff001
Působiště autorů: National Heart and Lung Institute, Imperial College, London, England, United Kingdom aff001;  Division of Paediatrics, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia aff002;  Respiratory Department, Perth Children’s Hospital, Perth, Western Australia aff003;  Telethon Kids Institute, Perth, Australia aff004;  Department of Microbiology, PathWest Laboratory Medicine WA, QEII Medical Centre, Perth, Australia aff005;  Emergency Department, Perth Children’s Hospital, Perth, Australia aff006;  Division of Emergency Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia aff007;  Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America aff008;  Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia aff009;  Royal Brompton and Harefield NHS Foundation Trust, London, England, United Kingdom aff010
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article


Acute viral wheeze in children is a major cause of hospitalisation and a major risk factor for the development of asthma. However, the role of the respiratory tract microbiome in the development of acute wheeze is unclear. To investigate whether severe wheezing episodes in children are associated with bacterial dysbiosis in the respiratory tract, oropharyngeal swabs were collected from 109 children with acute wheezing attending the only tertiary paediatric hospital in Perth, Australia. The bacterial community from these samples was explored using next generation sequencing and compared to samples from 75 non-wheezing controls. No significant difference in bacterial diversity was observed between samples from those with wheeze and healthy controls. Within the wheezing group, attendance at kindergarten or preschool was however, associated with increased bacterial diversity. Rhinovirus (RV) infection did not have a significant effect on bacterial community composition. A significant difference in bacterial richness was observed between children with RV-A and RV-C infection, however this is likely due to the differences in age group between the patient cohorts. The bacterial community within the oropharynx was found to be diverse and heterogeneous. Age and attendance at day care or kindergarten were important factors in driving bacterial diversity. However, wheeze and viral infection were not found to significantly relate to the bacterial community. Bacterial airway microbiome is highly variable in early life and its role in wheeze remains less clear than viral influences.

Klíčová slova:

Children – Microbiome – Respiratory infections – Ribosomal RNA – Sequence databases – Viral transmission and infection – Bronchiolitis – Rhinovirus infection


1. Goto T, Tsugawa Y, Mansbach JM, Camargo CA Jr, Hasegawa K. Trends in Infectious Disease Hospitalizations in US Children, 2000 to 2012. Pediatr Infect Dis J. 2016;35(6):e158–63. Epub 2016/03/12. doi: 10.1097/INF.0000000000001134 26967815; PubMed Central PMCID: PMC4912127.

2. Bisgaard H, Hermansen MN, Buchvald F, Loland L, Halkjaer LB, Bonnelykke K, et al. Childhood asthma after bacterial colonization of the airway in neonates. N Engl J Med. 2007;357(15):1487–95. Epub 2007/10/12. doi: 10.1056/NEJMoa052632 17928596.

3. Ege MJ, Mayer M, Normand AC, Genuneit J, Cookson WO, Braun-Fahrlander C, et al. Exposure to environmental microorganisms and childhood asthma. N Engl J Med. 2011;364(8):701–9. Epub 2011/02/25. doi: 10.1056/NEJMoa1007302 21345099.

4. Castro-Rodriguez JA, Forno E, Rodriguez-Martinez CE, Celedon JC. Risk and Protective Factors for Childhood Asthma: What Is the Evidence? J Allergy Clin Immunol Pract. 2016;4(6):1111–22. Epub 2016/06/12. doi: 10.1016/j.jaip.2016.05.003 27286779; PubMed Central PMCID: PMC5107168.

5. Stern DA, Morgan WJ, Halonen M, Wright AL, Martinez FD. Wheezing and bronchial hyper-responsiveness in early childhood as predictors of newly diagnosed asthma in early adulthood: a longitudinal birth-cohort study. Lancet. 2008;372(9643):1058–64. Epub 2008/09/23. doi: 10.1016/S0140-6736(08)61447-6 18805334; PubMed Central PMCID: PMC2831297.

6. Mirzakhani H, Carey VJ, Zeiger R, Bacharier LB, O'Connor GT, Schatz MX, et al. Impact of parental asthma, prenatal maternal asthma control, and vitamin D status on risk of asthma and recurrent wheeze in 3-year-old children. Clin Exp Allergy. 2018. Epub 2018/11/22. doi: 10.1111/cea.13320 30461089.

7. Bizzintino J, Lee WM, Laing IA, Vang F, Pappas T, Zhang G, et al. Association between human rhinovirus C and severity of acute asthma in children. Eur Respir J. 2011;37(5):1037–42. Epub 2010/08/10. doi: 10.1183/09031936.00092410 20693244; PubMed Central PMCID: PMC3024467.

8. Bacharier LB. Viral-induced wheezing episodes in preschool children: approaches to therapy. Curr Opin Pulm Med. 2010;16(1):31–5. Epub 2009/10/10. doi: 10.1097/MCP.0b013e32833303e6 19816178.

9. Rossi GA, Colin AA. Infantile respiratory syncytial virus and human rhinovirus infections: respective role in inception and persistence of wheezing. Eur Respir J. 2015;45(3):774–89. Epub 2014/11/02. doi: 10.1183/09031936.00062714 25359340.

10. Miller EK, Bugna J, Libster R, Shepherd BE, Scalzo PM, Acosta PL, et al. Human rhinoviruses in severe respiratory disease in very low birth weight infants. Pediatrics. 2012;129(1):e60–7. Epub 2011/12/28. doi: 10.1542/peds.2011-0583 22201153; PubMed Central PMCID: PMC3255465.

11. Biesbroek G, Tsivtsivadze E, Sanders EA, Montijn R, Veenhoven RH, Keijser BJ, et al. Early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children. Am J Respir Crit Care Med. 2014;190(11):1283–92. Epub 2014/10/21. doi: 10.1164/rccm.201407-1240OC 25329446.

12. Bosch A, de Steenhuijsen Piters WAA, van Houten MA, Chu M, Biesbroek G, Kool J, et al. Maturation of the Infant Respiratory Microbiota, Environmental Drivers, and Health Consequences. A Prospective Cohort Study. Am J Respir Crit Care Med. 2017;196(12):1582–90. Epub 2017/07/01. doi: 10.1164/rccm.201703-0554OC 28665684.

13. Folsgaard NV, Schjorring S, Chawes BL, Rasmussen MA, Krogfelt KA, Brix S, et al. Pathogenic bacteria colonizing the airways in asymptomatic neonates stimulates topical inflammatory mediator release. Am J Respir Crit Care Med. 2013;187(6):589–95. Epub 2013/02/02. doi: 10.1164/rccm.201207-1297OC 23370914.

14. Lee WM, Grindle K, Pappas T, Marshall DJ, Moser MJ, Beaty EL, et al. High-throughput, sensitive, and accurate multiplex PCR-microsphere flow cytometry system for large-scale comprehensive detection of respiratory viruses. J Clin Microbiol. 2007;45(8):2626–34. Epub 2007/06/01. doi: 10.1128/JCM.02501-06 17537928; PubMed Central PMCID: PMC1951217.

15. Bochkov YA, Grindle K, Vang F, Evans MD, Gern JE. Improved molecular typing assay for rhinovirus species A, B, and C. J Clin Microbiol. 2014;52(7):2461–71. Epub 2014/05/03. doi: 10.1128/JCM.00075-14 24789198; PubMed Central PMCID: PMC4097758.

16. Lee WM, Kiesner C, Pappas T, Lee I, Grindle K, Jartti T, et al. A diverse group of previously unrecognized human rhinoviruses are common causes of respiratory illnesses in infants. Plos One. 2007;2(10):e966. Epub 2007/10/04. doi: 10.1371/journal.pone.0000966 17912345; PubMed Central PMCID: PMC1989136.

17. Chidlow GR, Harnett GB, Shellam GR, Smith DW. An economical tandem multiplex real-time PCR technique for the detection of a comprehensive range of respiratory pathogens. Viruses. 2009;1(1):42–56. Epub 2009/06/01. doi: 10.3390/v1010042 21994537; PubMed Central PMCID: PMC3185464.

18. Subrata LS, Bizzintino J, Mamessier E, Bosco A, McKenna KL, Wikstrom ME, et al. Interactions between innate antiviral and atopic immunoinflammatory pathways precipitate and sustain asthma exacerbations in children. J Immunol. 2009;183(4):2793–800. Epub 2009/07/22. doi: 10.4049/jimmunol.0900695 19620293.

19. Cuthbertson L, Craven V, Bingle L, Cookson W, Everard ML, Moffatt MF. The impact of persistent bacterial bronchitis on the pulmonary microbiome of children. Plos One. 2017;12(12):e0190075. Epub 2017/12/28. doi: 10.1371/journal.pone.0190075 29281698; PubMed Central PMCID: PMC5744971.

20. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460–1. Epub 2010/08/17. doi: 10.1093/bioinformatics/btq461 20709691.

21. Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics. 2010;26(2):266–7. Epub 2009/11/17. doi: 10.1093/bioinformatics/btp636 19914921; PubMed Central PMCID: PMC2804299.

22. DeSantis TZ Jr, Hugenholtz P, Keller K, Brodie EL, Larsen N, Piceno YM, et al. NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res. 2006;34(Web Server issue):W394-9. Epub 2006/07/18. doi: 10.1093/nar/gkl244 16845035; PubMed Central PMCID: PMC1538769.

23. Team RDC. R: A Language and Environment for Statistical Computing. R Found Stat Comput. 2015.

24. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. Plos One. 2013;8(4):e61217. Epub 2013/05/01. doi: 10.1371/journal.pone.0061217 23630581; PubMed Central PMCID: PMC3632530.

25. Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2018;6(1):226. Epub 2018/12/19. doi: 10.1186/s40168-018-0605-2 30558668; PubMed Central PMCID: PMC6298009.

26. Belk A, Xu ZZ, Carter DO, Lynne A, Bucheli S, Knight R, et al. Microbiome Data Accurately Predicts the Postmortem Interval Using Random Forest Regression Models. Genes (Basel). 2018;9(2). Epub 2018/02/22. doi: 10.3390/genes9020104 29462950; PubMed Central PMCID: PMC5852600.

27. Dahl C, Stanislawski M, Iszatt N, Mandal S, Lozupone C, Clemente JC, et al. Gut microbiome of mothers delivering prematurely shows reduced diversity and lower relative abundance of Bifidobacterium and Streptococcus. Plos One. 2017;12(10):e0184336. Epub 2017/10/27. doi: 10.1371/journal.pone.0184336 29069100; PubMed Central PMCID: PMC5656300.

28. Man WH, van Houten MA, Merelle ME, Vlieger AM, Chu M, Jansen NJG, et al. Bacterial and viral respiratory tract microbiota and host characteristics in children with lower respiratory tract infections: a matched case-control study. Lancet Respir Med. 2019. Epub 2019/03/20. doi: 10.1016/S2213-2600(18)30449-1 30885620.

29. Teo SM, Mok D, Pham K, Kusel M, Serralha M, Troy N, et al. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe. 2015;17(5):704–15. Epub 2015/04/14. doi: 10.1016/j.chom.2015.03.008 25865368; PubMed Central PMCID: PMC4433433.

30. Bogaert D, Keijser B, Huse S, Rossen J, Veenhoven R, van Gils E, et al. Variability and diversity of nasopharyngeal microbiota in children: a metagenomic analysis. Plos One. 2011;6(2):e17035. Epub 2011/03/10. doi: 10.1371/journal.pone.0017035 21386965; PubMed Central PMCID: PMC3046172.

31. Mika M, Mack I, Korten I, Qi W, Aebi S, Frey U, et al. Dynamics of the nasal microbiota in infancy: a prospective cohort study. J Allergy Clin Immunol. 2015;135(4):905–12 e11. Epub 2015/02/01. doi: 10.1016/j.jaci.2014.12.1909 25636948.

32. Valiathan R, Ashman M, Asthana D. Effects of Ageing on the Immune System: Infants to Elderly. Scand J Immunol. 2016;83(4):255–66. Epub 2016/01/26. doi: 10.1111/sji.12413 26808160.

33. Mansbach JM, Piedra PA, Borregaard N, Martineau AR, Neuman MI, Espinola JA, et al. Serum cathelicidin level is associated with viral etiology and severity of bronchiolitis. J Allergy Clin Immunol. 2012;130(4):1007–8 e1. Epub 2012/09/05. doi: 10.1016/j.jaci.2012.07.044 22944482; PubMed Central PMCID: PMC3462235.

34. Moore HC, Hall GL, de Klerk N. Infant respiratory infections and later respiratory hospitalisation in childhood. Eur Respir J. 2015;46(5):1334–41. Epub 2015/08/22. doi: 10.1183/13993003.00587-2015 26293501.

35. Brusselle G, Canvin J, Weiss S, Sun SX, Buhl R. Stratification of eosinophilic asthma patients treated with reslizumab and GINA Step 4 or 5 therapy. ERJ Open Res. 2017;3(3). Epub 2017/08/29. doi: 10.1183/23120541.00004–2017 28845430; PubMed Central PMCID: PMC5570512

36. Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C, et al. Disordered microbial communities in asthmatic airways. Plos One. 2010;5(1):e8578. Epub 2010/01/07. doi: 10.1371/journal.pone.0008578 20052417; PubMed Central PMCID: PMC2798952.

37. Charlson ES, Bittinger K, Haas AR, Fitzgerald AS, Frank I, Yadav A, et al. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med. 2011;184(8):957–63. Epub 2011/06/18. doi: 10.1164/rccm.201104-0655OC 21680950; PubMed Central PMCID: PMC3208663.

Článek vyšel v časopise


2019 Číslo 10
Nejčtenější tento týden