Organ preservation solution containing dissolved hydrogen gas from a hydrogen-absorbing alloy canister improves function of transplanted ischemic kidneys in miniature pigs

Autoři: Eiji Kobayashi aff001;  Motoaki Sano aff001
Působiště autorů: Department of Cardiology, Keio University School of Medicine, Tokyo, Japan aff001;  Department of Organ Fabrication, Keio University School of Medicine, Tokyo, Japan aff002;  Center for Molecular Hydrogen Medicine, Keio University, Tokyo, Japan aff003
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0222863


Various methods have been devised to dissolve hydrogen gas in organ preservation solutions, including use of a hydrogen gas cylinder, electrolysis, or a hydrogen-generating agent. However, these methods require considerable time and effort for preparation. We investigated a practical technique for rapidly dissolving hydrogen gas in organ preservation solutions by using a canister containing hydrogen-absorbing alloy. The efficacy of hydrogen-containing organ preservation solution created by this method was tested in a miniature pig model of kidney transplantation from donors with circulatory arrest. The time required for dissolution of hydrogen gas was only 2–3 minutes. When hydrogen gas was infused into a bag containing cold ETK organ preservation solution at a pressure of 0.06 MPa and the bag was subsequently opened to the air, the dissolved hydrogen concentration remained at 1.0 mg/L or more for 4 hours. After warm ischemic injury was induced by circulatory arrest for 30 minutes, donor kidneys were harvested and perfused for 5 minutes with hydrogen-containing cold ETK solution or hydrogen-free cold ETK solution. The perfusion rate was faster from the initial stage with hydrogen-containing cold ETK solution than with hydrogen-free ETK solution. After storage of the kidney in hydrogen-free preservation solution for 1 hour before transplantation, no urine production was observed and blood flow was not detected in the transplanted kidney at sacrifice on postoperative day 6. In contrast, after storage in hydrogen-containing preservation solution for either 1 or 4 hours, urine was detected in the bladder and blood flow was confirmed in the transplanted kidney. This method of dissolving hydrogen gas in organ preservation solution is a practical technique for potentially converting damaged organs to transplantable organs that can be used safely in any clinical setting where organs are removed from donors.

Klíčová slova:

Cardiac arrest – Hydrogen – Kidneys – Renal transplantation – Solutions – Solvation – Urine – Pig models


1. Nasralla D, Coussios CC, Mergental H, Akhtar MZ, Butler AJ, Ceresa CDL; Consortium for Organ Preservation in Europe. A randomized trial of normothermic preservation in liver transplantation. Nature 2018; 557: 50–56. doi: 10.1038/s41586-018-0047-9 29670285

2. Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med. 2007; 13: 688–694. doi: 10.1038/nm1577 17486089

3. Hayashida K, Sano M, Ohsawa I, Shinmura K, Tamaki K, Kimura K, et al. Inhalation of hydrogen gas reduces infarct size in the rat model of myocardial ischemia-reperfusion injury. Biochem Biophys Res Commun. 2008; 373: 30–35. doi: 10.1016/j.bbrc.2008.05.165 18541148

4. Hayashida K, Sano M, Kamimura N, Yokota T, Suzuki M, Ohta S, et al. Hydrogen inhalation during normoxic resuscitation improves neurological outcome in a rat model of cardiac arrest independently of targeted temperature management. Circulation 2014; 130: 2173–2180. doi: 10.1161/CIRCULATIONAHA.114.011848 25366995

5. Matsuoka T, Suzuki M, Sano M, Hayashida K, Tamura T, Homma K, et al. Hydrogen gas inhalation inhibits progression to the "irreversible" stage of shock after severe hemorrhage in rats. J Trauma Acute Care Surg. 2017; 83: 469–475. doi: 10.1097/TA.0000000000001620 28640781

6. Buchholz BM, Kaczorowski DJ, Sugimoto R, Yang R, Wang Y, Billiar TR, et al. Hydrogen inhalation ameliorates oxidative stress in transplantation induced intestinal graft injury. Am J Transplant. 2008; 8: 2015–2024. doi: 10.1111/j.1600-6143.2008.02359.x 18727697

7. Buchholz BM, Masutani K, Kawamura T, Peng X, Toyoda Y, Billiar TR, et al. Hydrogen-enriched preservation protects the isogeneic intestinal graft and amends recipient gastric function during transplantation. Transplantation 2011; 92: 985–992 21956195

8. Kawamura T, Huang CS, Tochigi N, Lee S, Shigemura N, Billiar TR, et al. Inhaled hydrogen gas therapy for prevention of lung transplant-induced ischemia/reperfusion injury in rats. Transplantation 2010; 90: 1344–1351. doi: 10.1097/TP.0b013e3181fe1357 21048533

9. Kawamura T, Huang CS, Peng X, Masutani K, Shigemura N, Billiar TR, et al. The effect of donor treatment with hydrogen on lung allograft function in rats. Surgery 2011; 150: 240–249. doi: 10.1016/j.surg.2011.05.019 21801961

10. Zhou H, Fu Z, Wei Y, Liu J, Cui X, Yang W, et al. Hydrogen inhalation decreases lung graft injury in brain-dead donor rats. J Heart Lung Transplant. 2013; 32: 251–258. doi: 10.1016/j.healun.2012.11.007 23273744

11. Noda K, Shigemura N, Tanaka Y, Bhama J, D’Cunha J, Kobayashi H, et al. Hydrogen preconditioning during ex vivo lung perfusion improves the quality of lung grafts in rats. Transplantation 2014; 98: 499–506. doi: 10.1097/TP.0000000000000254 25121557

12. Haam S, Lee S, Paik HC, Park MS, Song JH, Lim BJ, et al. The effects of hydrogen gas inhalation during ex vivo lung perfusion on donor lungs obtained after cardiac death. Eur J Cardiothorac Surg. 2015;48: 542–547. doi: 10.1093/ejcts/ezv057 25750008

13. Meng C, Ma L, Niu L, Cui X, Liu J, Kang J, et al. Protection of donor lung inflation in the setting of cold ischemia against ischemia-reperfusion injury with carbon monoxide, hydrogen, or both in rats. Life Sci. 2016; 151: 199–206. doi: 10.1016/j.lfs.2016.03.015 26969763

14. Haam S, Lee JG, Paik HC, Park MS, Lim BJ. Hydrogen gas inhalation during ex vivo lung perfusion of donor lungs recovered after cardiac death. J Heart Lung Transplant. 2018; 37: 1271–1278. doi: 10.1016/j.healun.2018.06.007 30100327

15. Shimada S, Wakayama K, Fukai M, Shimamura T, Ishikawa T, Fukumori D, et al. Hydrogen gas ameliorates hepatic reperfusion injury after prolonged cold preservation in isolated perfused rat liver. Artif Organs 2016; 40: 1128–1136. doi: 10.1111/aor.12710 27140066

16. Ishikawa T, Shimada S, Fukai M, Kimura T, Umemoto K, Shibata K, et al. Post-reperfusion hydrogen gas treatment ameliorates ischemia reperfusion injury in rat livers from donors after cardiac death: a preliminary study. Surg Today 2018; 48: 1081–1088. doi: 10.1007/s00595-018-1693-0 29980846

17. Tamaki I, Hata K, Okamura Y, Nigmet Y, Hirao H, Kubota T, et al. hydrogen flush after cold storage as a new end-ischemic ex vivo treatment for liver grafts against ischemia/reperfusion injury. Liver Transpl. 2018; 24: 1589–1602. doi: 10.1002/lt.25326 30120877

18. Uto K, Sakamoto S, Que W, Shimata K, Hashimoto S, Sakisaka M, et al. Hydrogen-rich solution attenuates cold ischemia-reperfusion injury in rat liver transplantation. BMC Gastroenterol. 2019; 19: 25. doi: 10.1186/s12876-019-0939-7 30736744

19. Tan M, Sun X, Guo L, Su C, Sun X, Xu Z. Hydrogen as additive of HTK solution fortifies myocardial preservation in grafts with prolonged cold ischemia. Int J Cardiol. 2013; 167:383–390. doi: 10.1016/j.ijcard.2011.12.109 22264873

20. Noda K, Shigemura N, Tanaka Y, Kawamura T, Hyun Lim S, Kokubo K, et al. A novel method of preserving cardiac grafts using a hydrogen-rich water bath. J Heart Lung Transplant. 2013; 32:241–250. doi: 10.1016/j.healun.2012.11.004 23273745

21. Yamada T, Uchida K, Onuma K, Kuzuno J, Ujihira M, Inoue G, et al. Hydrogen supplementation of preservation solution improves viability of osteochondral grafts. Scientific World Journal 2014; 2014:109876. doi: 10.1155/2014/109876 25506061

22. Abe T, Li XK, Yazawa K, Hatayama N, Xie L, Sato B, et al. Hydrogen-rich University of Wisconsin solution attenuates renal cold ischemia-reperfusion injury. Transplantation 2012; 94: 14–21. doi: 10.1097/TP.0b013e318255f8be 22683850

23. Tohyama S, Kobayashi E. Age-appropriateness of porcine models used for cell transplantation. Cell Transplant. 2019; 28: 224–228. doi: 10.1177/0963689718817477 30525991

24. Torai S, Yoshimoto S, Yoshioka M, Nadahara S, Kobayashi E. Reduction of warm ischemia using a Thermal Barrier Bag in kidney transplantation: a pig study. Transplant Proc. 2019;51: 1442–1450 31079942

25. Kobayashi E, Torai S. Intra-abdominal cooling for the transplanted kidney. Transplant Direct. 2019;5: e-438

26. Loupy A, Haas M, Solez K, Racusen L, Glotz D, Seron D, et al. The Banff 2015 Kidney Meeting Report: Current challenges in rejection classification and prospects for adopting molecular pathology. Am J Transplant. 2017; 17: 28–41. doi: 10.1111/ajt.14107 27862883

27. Solez K, Axelsen RA, Benediktsson H, Burdick JF, Cohen AH, Colvin RB, et al. International standardization of criteria for the histologic diagnosis of renal allograft rejection: the Banff working classification of kidney transplant pathology. Kidney Int. 1993; 44: 411–422. doi: 10.1038/ki.1993.259 8377384

28. Iwai S, Kikuchi T, Kasahara N, Teratani T, Yokoo T, Sakonju I, et al. Impact of normothermic preservation with extracellular type solution containing trehalose on rat kidney grafting from a cardiac death donor. PLoS One 2012; 7: e33157. doi: 10.1371/journal.pone.0033157 22457739

29. Kaimori JY, Iwai S, Hatanaka M, Teratani T, Obi Y, Tsuda H, et al. Non-invasive magnetic resonance imaging in rats for prediction of the fate of grafted kidneys from cardiac death donors. PLoS One. 2013 May 7;8(5):e63573 doi: 10.1371/journal.pone.0063573 23667641

30. Katsumata Y, Sano F, Abe T, Tamura T, Fujisawa T, Shiraishi Y, et al. The effects of hydrogen gas inhalation on adverse left ventricular remodeling after percutaneous coronary intervention for ST-elevated myocardial infarction- First pilot study in humans. Circ J. 2017; 81: 940–947. doi: 10.1253/circj.CJ-17-0105 28321000

31. Wamser P, Asari R, Goetzinger P, Mayer G, Berlakovich G, Soliman T, et al. Detrimental effects of controlled reperfusion on renal function after porcine autotransplantation are fully compensated by the use of Carolina rinse solution. Transpl Int. 2003; 16:191–196 12664215

32. Iwai S, Sakonju I, Okano S, Teratani T, Kasahara N, Yokote S, et al. Impact of ex vivo administration of mesenchymal stem cells on the function of kidney grafts from cardiac death donors in rat. Transplant Proc. 2014;46:1578–1584. doi: 10.1016/j.transproceed.2013.12.068 24935331

33. Erpicum P, Weekers L, Detry O, Bonvoisin C, Delbouille MH, Grégoire C, et al. Infusion of third-party mesenchymal stromal cells after kidney transplantation: a phase I-II, open-label, clinical study. Kidney Int. 2019; 95: 693–707. doi: 10.1016/j.kint.2018.08.046 30528263

Článek vyšel v časopise


2019 Číslo 10

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Zvyšte si kvalifikaci online z pohodlí domova

Léčba bolesti v ordinaci praktického lékaře
nový kurz
Autoři: MUDr. PhDr. Zdeňka Nováková, Ph.D.

Revmatoidní artritida: včas a k cíli
Autoři: MUDr. Heřman Mann

Jistoty a nástrahy antikoagulační léčby aneb kardiolog - neurolog - farmakolog - nefrolog - právník diskutují
Autoři: doc. MUDr. Štěpán Havránek, Ph.D., prof. MUDr. Roman Herzig, Ph.D., doc. MUDr. Karel Urbánek, Ph.D., prim. MUDr. Jan Vachek, MUDr. et Mgr. Jolana Těšínová, Ph.D.

Léčba akutní pooperační bolesti
Autoři: doc. MUDr. Jiří Málek, CSc.

Nové antipsychotikum kariprazin v léčbě schizofrenie
Autoři: prof. MUDr. Cyril Höschl, DrSc., FRCPsych.

Všechny kurzy
Kurzy Doporučená témata Časopisy
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.


Nemáte účet?  Registrujte se