The cost-effectiveness of controlling cervical cancer using a new 9-valent human papillomavirus vaccine among school-aged girls in Australia


Autoři: Rashidul Alam Mahumud aff001;  Khorshed Alam aff001;  Jeff Dunn aff001;  Jeff Gow aff001
Působiště autorů: Health Economics and Policy Research, Centre for Health, Informatics and Economic Research, University of Southern Queensland, Toowoomba, Queensland, Australia aff001;  School of Commerce, University of Southern Queensland, Toowoomba, QLD Australia aff002;  Health Economics Research, Health Systems and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh aff003;  Health and Epidemiology Research, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh aff004;  Cancer Research Centre, Cancer Council Queensland, Fortitude Valley, QLD, Australia aff005;  Prostate Cancer Foundation of Australia, St Leonards NSW, Australia aff006;  School of Accounting, Economics and Finance, University of KwaZulu-Natal, Durban, South Africa aff007
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223658

Souhrn

Introduction

Cervical cancer imposes a substantial health burden worldwide including in Australia and is caused by persistent infection with one of 13 sexually transmitted high-risk human papillomavirus (HPV) types. The objective of this study was to assess the cost-effectiveness of adding a nonavalent new Gardasil-9® (9vHPV) vaccine to the national immunisation schedule in Australia across three different delivery strategies.

Materials and methods

The Papillomavirus Rapid Interface for Modelling and Economics (PRIME) model was used to examine the cost-effectiveness of 9vHPV vaccine introduction to prevent HPV infection. Academic literature and anecdotal evidence were included on the demographic variables, cervical cancer incidence and mortality, treatment costs, and vaccine delivery costs. The incremental cost-effectiveness ratios (ICERs) were measured per disability-adjusted life years (DALYs) averted, using the heuristic cost-effectiveness threshold defined by the World Health Organisation (WHO). Analyses and data from international agencies were used in scenario analysis from the health system and societal perspectives.

Results

The 9vHPV vaccination was estimated to prevent 113 new cases of cervical cancer (discounted) during a 20-year period. From the health system and societal perspectives, the 9vHPV vaccination was very cost-effective in comparison with the status quo, with an ICER of A$47,008 and A$44,678 per DALY averted, respectively, using the heuristic cost-effectiveness threshold level. Considering delivery strategies, the ICERs per DALY averted were A$47,605, A$46,682, and A$46,738 for school, health facilities, and outreach-based vaccination programs from the health system perspective, wherein, from the societal perspective, the ICERs per DALY averted were A$46,378, A$43,729, A$43,930, respectively. All estimates of ICERs fell below the threshold level (A$73,267).

Conclusions

This cost-effectiveness evaluation suggests that the routine two-dose 9vHPV vaccination strategy of preadolescent girls against HPV is very cost-effective in Australia from both the health system and societal perspectives. If equally priced, the 9vHPV option is the most economically viable vaccine. Overall, this analysis seeks to contribute to an evidence-based recommendation about the new 9vHPV vaccination in the national immunisation program in Australia.

Klíčová slova:

Australia – Cervical cancer – Cost-effectiveness analysis – Human papillomavirus infection – Social systems – Vaccination and immunization – Vaccines – Cancer vaccines


Zdroje

1. World Health Organization (WHO). National cancer contro programmes: Cervical cancer statistics [Internet]. 2019 [cited 29 Aug 2019]. Available: https://www.who.int/cancer/prevention/diagnosis-screening/cervical-cancer/en/

2. Australian Institute of Health and Welfare. Cervical cancer in Australia: Cervical cancer statistics [Internet]. 2018 [cited 14 Feb 2019]. Available: https://cervical-cancer.canceraustralia.gov.au/statistics

3. Forman D, Lortet-Tieulent J, de Martel C, Ferlay J, Franceschi S, Plummer M, et al. Global burden of human papillomavirus and related diseases. Vaccine. 2012;30: F12–F23. doi: 10.1016/j.vaccine.2012.07.055 23199955

4. Centers for Disease Control (CDC). Genital HPV infection—fact sheet. Centers for disease control and prevention [Internet]. 2015 [cited 14 Feb 2019]. Available: http://www.cdc.gov/std/hpv/stdfact-hpv.htm

5. Mennini FS, Bonanni P, Bianic F, Waure C, Baio G, Plazzotta G, et al. Cost-effectiveness analysis of the nine-valent HPV vaccine in Italy. Cost Effectiveness and Resource Allocation. 2017;15: 1–14. doi: 10.1186/s12962-017-0063-x

6. Guan P, Howell-Jones R, Li N, Bruni L, De Sanjosé S, Franceschi S, et al. Human papillomavirus types in 115,789 HPV-positive women: A meta-analysis from cervical infection to cancer. International Journal of Cancer. 2012;131: 2349–2359. doi: 10.1002/ijc.27485 22323075

7. Li N, Franceschi S, Howell-Jones R, Snijders PJF, Clifford GM. Human papillomavirus type distribution in 30,848 invasive cervical cancers worldwide: Variation by geographical region, histological type and year of publication. International Journal of Cancer. 2011;128: 927–935. doi: 10.1002/ijc.25396 20473886

8. Giuliano AR, Nyitray AG, Kreimer AR, Pierce Campbell CM, Goodman MT, Sudenga SL, et al. EUROGIN 2014 roadmap: Differences in human papillomavirus infection natural history, transmission and human papillomavirus-related cancer incidence by gender and anatomic site of infection. International Journal of Cancer. 2015;136: 2752–2760. doi: 10.1002/ijc.29082 25043222

9. Patel C, Brotherton JML, Pillsbury A, Jayasinghe S, Donovan B, Macartney K, et al. The impact of 10 years of human papillomavirus (HPV) vaccination in Australia: What additional disease burden will a nonavalent vaccine prevent? Eurosurveillance. 2018;23: 30–40. doi: 10.2807/1560-7917.ES.2018.23.41.1700737 30326995

10. Jit M, Brisson M, Portnoy A, Hutubessy R. Cost-effectiveness of female human papillomavirus vaccination in 179 countries: A PRIME modelling study. Lancet Global Health. 2014;2: e406–e414. doi: 10.1016/S2214-109X(14)70237-2 25103394

11. Georgousakis M, Jayasinghe S, Brotherton J, Gilroy N, Chiu C, Macartney K. Population-wide vaccination against human papillomavirus in adolescent boys: Australia as a case study. Lancet Infectious Diseases. 2012;12: 627–634. doi: 10.1016/S1473-3099(12)70031-2 22445354

12. Ward K, Quinn H, Bachelor M, Bryant V, Campbell-Lloyd S, Newbound A, et al. Adolescent school-based vaccination in Australia. Commun Dis Intell Q Rep. 2013;37: E156–67. 24168090

13. Department of Health and Ageing. Immunise Australia program: human papillomavirus (HPV) [Internet]. [cited 13 Feb 2019]. Available: http://www.health.gov.au/internet/immunise/publishing.nsf/%0AContent/immunise-hpv

14. Smith MA, Canfell K. Projected impact of HPV vaccination and primary HPV screening on cervical adenocarcinoma: Example from Australia. Papillomavirus Research. 2017;3: 134–141. doi: 10.1016/j.pvr.2017.04.003 28720447

15. Office of the Prime Minister of Australia. A new vaccine to strengthen the health of young Australians [Internet]. 2017 [cited 13 Feb 2019]. Available: https://parlinfo.aph.gov.au/parlInfo/search/display/display.w3p;query=Id:%22media/pressrel/5562151%22

16. Serrano B, Alemany L, Tous S, Bruni L, Clifford GM, Weiss T, et al. Potential impact of a nine-valent vaccine in human papillomavirus related cervical disease. Infectious Agents and Cancer. 2012;7: 1–13. doi: 10.1186/1750-9378-7-1

17. Brotherton JML, Tabrizi SN, Phillips S, Pyman J, Cornall AM, Lambie N, et al. Looking beyond human papillomavirus (HPV) genotype 16 and 18: Defining HPV genotype distribution in cervical cancers in Australia prior to vaccination. International Journal of Cancer. 2017;141: 1576–1584. doi: 10.1002/ijc.30871 28677147

18. Simms KT, Laprise JF, Smith MA, Lew J Bin, Caruana M, Brisson M, et al. Cost-effectiveness of the next generation nonavalent human papillomavirus vaccine in the context of primary human papillomavirus screening in Australia: A comparative modelling analysis. Lancet Public Health. 2016;1: e66–e75. doi: 10.1016/S2468-2667(16)30019-6 29253419

19. Drolet M, Laprise JF, Boily MC, Franco EL, Brisson M. Potential cost-effectiveness of the nonavalent human papillomavirus (HPV) vaccine. International Journal of Cancer. 2014;134: 2264–2268. doi: 10.1002/ijc.28541 24174175

20. Chesson HW, Meites E, Ekwueme DU, Saraiya M, Markowitz LE. Cost-effectiveness of nonavalent HPV vaccination among males aged 22 through 26years in the United States. Vaccine. 2018;36: 4362–4368. doi: 10.1016/j.vaccine.2018.04.071 29887325

21. Chesson HW, Laprise JF, Brisson M, Markowitz LE. Impact and cost-effectiveness of 3 doses of 9-valent human papillomavirus (HPV) vaccine among US females previously vaccinated with 4-valent hpv vaccine. Journal of Infectious Diseases. 2016;213: 1694–1700. doi: 10.1093/infdis/jiw046 26908738

22. Brisson M, Laprise JF, Chesson HW, Drolet M, Malagón T, Boily MC, et al. Health and economic impact of switching from a 4-Valent to a 9-valent HPV vaccination program in the United States. Journal of the National Cancer Institute. 2016;108: 1–9. doi: 10.1093/jnci/djv282 26438574

23. Laprise JF, Markowitz LE, Chesson HW, Drolet M, Brisson M. Comparison of 2-dose and 3-dose 9-valent human papillomavirus vaccine schedules in the United States: A cost-effectiveness analysis. Journal of Infectious Diseases. 2016;214: 685–688. doi: 10.1093/infdis/jiw227 27234416

24. Chesson HW, Markowitz LE, Hariri S, Ekwueme DU, Saraiya M. The impact and cost-effectiveness of nonavalent HPV vaccination in the United States: Estimates from a simplified transmission model. Human Vaccines and Immunotherapeutics. 2016;12: 1363–1372. doi: 10.1080/21645515.2016.1140288 26890978

25. Chesson HW, Laprise JF, Brisson M, Markowitz LE. Impact and cost-effectiveness of 3 doses of 9-valent human papillomavirus (HPV) vaccine among US females previously vaccinated with 4-valent hpv vaccine. Journal of Infectious Diseases. 2016;213: 1694–1700. doi: 10.1093/infdis/jiw046 26908738

26. Markowitz LE, Drolet M, Laprise J-F, Brisson M, Chesson HW. Comparison of 2-dose and 3-dose 9-valent humanpapillomavirus vaccine schedules in the United States: A cost-effectiveness analysis. Journal of Infectious Diseases. 2016;214: 685–688. doi: 10.1093/infdis/jiw227 27234416

27. Chesson HW, Laprise JF, Brisson M, Markowitz LE. Impact and Cost-effectiveness of 3 Doses of 9-Valent Human Papillomavirus (HPV) vaccine among US females previously vaccinated with 4-valent hpv vaccine. Journal of Infectious Diseases. 2016;213: 1694–1700. doi: 10.1093/infdis/jiw046 26908738

28. Largeron N, Petry KU, Jacob J, Bianic F, Anger D, Uhart M. An estimate of the public health impact and cost-effectiveness of universal vaccination with a 9-valent HPV vaccine in Germany. Expert Review of Pharmacoeconomics and Outcomes Research. 2017;17: 85–98. doi: 10.1080/14737167.2016.1208087 27366939

29. De La Fuente J, Hernandez Aguado JJ, Martín MS, Boix PR, Gómez SC, López N. Estimating the epidemiological impact and cost-effectiveness profile of a nonavalent hpv vaccine in Spain. Human Vaccines & Immunotherapeutics. 2019;15: 1949–1961. doi: 10.1080/21645515.2018.1560770 30698488

30. Kiatpongsan S, Kim JJ. Costs and cost-effectiveness of 9-valent human papillomavirus (HPV) vaccination in two east african countries. PLoS ONE. 2014;9: 1–6. doi: 10.1371/journal.pone.0106836 25198104

31. Edejer TT-T, Baltussen R, Adam T, Hutubessy R, Acharya A, Evans D., et al. Making choices in health: WHO guide to cost-effective analysis. 20 Avenue Appia, 1211 Geneva 27, Switzerland; 2003. Report No.: 9241546018.

32. Van Minh H, My NTT, Jit M. Cervical cancer treatment costs and cost-effectiveness analysis of human papillomavirus vaccination in Vietnam: A PRIME modeling study. BMC Health Services Research. 2017;17: 1–7. doi: 10.1186/s12913-016-1943-z

33. Harris AH, Hill SR, Chin G, Jing Jing Li, Walkom E. The role of value for money in public insurance coverage decisions for drugs in australia: A retrospective analysis 1994–2004. Medical Decision Making. 2008;28: 713–722. doi: 10.1177/0272989X08315247 18378939

34. George B, Harris A, Mitchell A. Cost-effectivenessanalysisandthe consistency of decision making: Evidence from pharmaceutical reimbursement in Australia (1991to1996). Pharmacoeconomics. 2001;19: 1103–1109. doi: 10.2165/00019053-200119110-00004 11735677

35. Henry DA, Hill SR, Harris A. Drug prices and value for money: The Australian Pharmaceutical Benefits Scheme. JAMA. 2005;294: 2630–2632. doi: 10.1001/jama.294.20.2630 16304078

36. Roche Products Pty Ltd. Access to oncology medicines in Australia, Roche response to Medicines Australia Oncology Industry Taskforce report. [Internet]. 2013. Available: medicinesaustralia.com.au/files/2013/07/%0A131021_OIT_Roche_response_FINAL_.pdf

37. Lowe A, Dyson S. New therapies for advanced cancers: Can our society afford them? Is it Ethical to deny patients access to them? Hilton Sydney, Australia; 2013.

38. WHO Commission on Macroeconomics and Health. Macroeconomics and health: Investing in health for economic development. Report of the Commission on Macroeconomics and Health [Internet]. 20 Avenue Appia, 1211 Geneva 27, Switzerland; 2001. Available: http://whqlibdoc.who.int/publications/2001/924154550x.pdf

39. Australian Technical Advisory Group on Immunisation (ATAGI). Clinical advice and fact sheet: Introduction of GARDASIL-9 (9vHPV) in a 2 dose schedule under the school-based national immunisation program (NIP). In: Department of Health, Australian Government. 2018.

40. Brotherton JM. Human papillomavirus vaccination update: Nonavalent vaccine and the two-dose schedule. Australian journal of general practice. 2018;47: 417–421. doi: 10.31128/AJGP-01-18-4462 30114867

41. Botwright S, Holroyd T, Nanda S, Bloem P, Griffiths UK, Sidibe A, et al. Experiences of operational costs of HPV vaccine delivery strategies in Gavi-supported demonstration projects. PLoS ONE. 2017;12: 1–13. doi: 10.1371/journal.pone.0182663 29016596

42. World Health Organization (WHO). WHO Cervical Cancer Prevention and Control Costing Tool (C4P): Immunization, Vaccines and Biologicals [Internet]. 2018. Available: https://www.who.int/immunization/diseases/hpv/cervical_cancer_costing_tool/en/

43. Lew JB, Howard K, Gertig D, Smith M, Clements M, Nickson C, et al. Expenditure and resource utilisation for cervical screening in Australia. BMC Health Services Research. 2012;12: 1. doi: 10.1186/1472-6963-12-1

44. Dubas-Jakóbczyk K, Kocot E, Seweryn M, Koperny M. Production lost due to cervical cancer in Poland in 2012. Medycyna Pracy. 2016;67: 289–299. doi: 10.13075/mp.5893.00378 27364103

45. Rice D. Estimating the cost of illness. American Journal of Public Health and the Nations Health. 2008;57: 424–440. doi: 10.2105/ajph.57.3.424 6066903

46. Sarker AR, Islam Z, Khan IA, Saha A, Chowdhury F, Khan AI, et al. Cost of illness for cholera in a high risk urban area in Bangladesh: an analysis from household perspective. BMC Infectious Diseases. 2013;13: 2–7. doi: 10.1186/1471-2334-13-2

47. The Australian Bureau of Statistics. Consumer price index, Australia, December 2018. [Internet]. 2019 [cited 11 Mar 2019]. Available: http://www.abs.gov.au/ausstats/abs@.nsf/mf/6401.0

48. Bray F, Ferlay J, Soerjomataram I. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2018;68: 394–424. doi: 10.3322/caac.21492 30207593

49. Drolet M, Laprise JF, Boily MC, Franco EL, Brisson M. Potential cost-effectiveness of the nonavalent human papillomavirus (HPV) vaccine. International Journal of Cancer. 2014;134: 2264–2268. doi: 10.1002/ijc.28541 24174175

50. The Australian Bureau of Statistics (ABS). Births registered, summary statistics for Australian: Australian Demographic Statistics (cat. no. 3101.0). 2018.

51. Donovan B, Marshall H, Macartney K, Patel C, Pillsbury A, Brotherton JM, et al. The impact of 10 years of human papillomavirus (HPV) vaccination in Australia: what additional disease burden will a nonavalent vaccine prevent? Eurosurveillance. 2018;23. doi: 10.2807/1560-7917.es.2018.23.41.1700737 30326995

52. Tan N, Sharma M, Winer R, Galloway D, Rees H, Barnabas R V. Model-estimated effectiveness of single dose 9-valent HPV vaccination for HIV-positive and HIV-negative females in South Africa. Vaccine. 2018;36: 4830–4836. doi: 10.1016/j.vaccine.2018.02.023 29891348

53. Zhang Z, Zhang J, Xia N, Zhao Q. Expanded strain coverage for a highly successful public health tool: Prophylactic 9-valent human papillomavirus vaccine. Human Vaccines and Immunotherapeutics. 2017;13: 2280–2291. doi: 10.1080/21645515.2017.1346755 28699820

54. Brotherton JML, Murray SL, Hall MA, Andrewartha LK, Banks CA, Meijer D, et al. Human papillomavirus vaccine coverage among female Australian adolescents: Success of the school-based approach. Medical Journal of Australia. 2013;199: 614–617. doi: 10.5694/mja13.10272 24182228

55. Brotherton JML, Winch KL, Bicknell L, Chappell G, Saville M. HPV vaccine coverage is increasing in Australia. Medical Journal of Australia. 2017;206: 262. doi: 10.5694/mja16.00958 28359009

56. Brisson M, Laprise JF, Chesson HW, Drolet M, Malagón T, Boily MC, et al. Health and economic impact of switching from a 4-Valent to a 9-valent HPV vaccination program in the United States. Journal of the National Cancer Institute. 2016;108: 1–9. doi: 10.1093/jnci/djv282 26438574

57. Explore Community Development Council. Immunisation Services: Immunisation price list 2018–19. In: City of Playford [Internet]. 2019 [cited 11 Mar 2019]. Available: https://www.playford.sa.gov.au/live/around-me/immunisation-services

58. Simms KT, Laprise JF, Smith MA, Lew J Bin, Caruana M, Brisson M, et al. Cost-effectiveness of the next generation nonavalent human papillomavirus vaccine in the context of primary human papillomavirus screening in Australia: a comparative modelling analysis. Lancet Public Health. 2016;1: e66–e75. doi: 10.1016/S2468-2667(16)30019-6 29253419

59. Chesson HW, Meites E, Ekwueme DU, Saraiya M, Markowitz LE. Cost-effectiveness of nonavalent HPV vaccination among males aged 22 through 26years in the United States. Vaccine. 2018;36: 4362–4368. doi: 10.1016/j.vaccine.2018.04.071 29887325

60. Jit M, Brisson M, Portnoy A, Hutubessy R. Cost-effectiveness of female human papillomavirus vaccination in 179 countries: A PRIME modelling study. Lancet Global Health. 2014;2: e406–e414. doi: 10.1016/S2214-109X(14)70237-2 25103394

61. The Australian Bureau of Statistics (ABS). Australian System of National Accounts, 2017–18: Population estimates are as published in the Australian Demographic Statistics (cat. no. 3101.0) and ABS projections. [Internet]. 2019. Available: https://search.abs.gov.au/s/search.html?collection=abs&form=simple&profile=_default&query=GDP+per+capita+in+2018

62. Boiron L, Joura E, Largeron N, Prager B, Uhart M. Estimating the cost-effectiveness profile of a universal vaccination programme with a nine-valent HPV vaccine in Austria. BMC Infectious Diseases. 2016;16: 1–15. doi: 10.1186/s12879-015-1330-0

63. Chesson HW, Markowitz LE, Hariri S, Ekwueme DU, Saraiya M. The impact and cost-effectiveness of nonavalent HPV vaccination in the United States: Estimates from a simplified transmission model. Human Vaccines and Immunotherapeutics. 2016;12: 1363–1372. doi: 10.1080/21645515.2016.1140288 26890978

64. Malagón T, Brisson M, Laprise J-F, Chesson HW, Markowitz LE, Drolet M, et al. Health and economic impact of switching from a 4-Valent to a 9-valent HPV vaccination program in the United States. Journal of the National Cancer Institute. 2015;108: 1–9. doi: 10.1093/jnci/djv282 26438574

65. Durham DP, Ndeffo-Mbah ML, Skrip LA, Jones FK, Bauch CT, Galvani AP. National- and state-level impact and cost-effectiveness of nonavalent HPV vaccination in the United States. Proceedings of the National Academy of Sciences. 2016;113: 5107–5112. doi: 10.1073/pnas.1515528113 27091978

66. Lerner D, Parsons SK, Justicia-Linde F, Chelmow D, Chang H, Rogers WH, et al. The impact of precancerous cervical lesions on functioning at work and work productivity. Journal of Occupational and Environmental Medicine. 2010;52: 926–933. doi: 10.1097/JOM.0b013e3181f12fb0 20798642


Článek vyšel v časopise

PLOS One


2019 Číslo 10

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Léčba bolesti v ordinaci praktického lékaře
nový kurz
Autoři: MUDr. PhDr. Zdeňka Nováková, Ph.D.

Revmatoidní artritida: včas a k cíli
Autoři: MUDr. Heřman Mann

Jistoty a nástrahy antikoagulační léčby aneb kardiolog - neurolog - farmakolog - nefrolog - právník diskutují
Autoři: doc. MUDr. Štěpán Havránek, Ph.D., prof. MUDr. Roman Herzig, Ph.D., doc. MUDr. Karel Urbánek, Ph.D., prim. MUDr. Jan Vachek, MUDr. et Mgr. Jolana Těšínová, Ph.D.

Léčba akutní pooperační bolesti
Autoři: doc. MUDr. Jiří Málek, CSc.

Nové antipsychotikum kariprazin v léčbě schizofrenie
Autoři: prof. MUDr. Cyril Höschl, DrSc., FRCPsych.

Všechny kurzy
Kurzy Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se