PIAS1 is not suitable as a urothelial carcinoma biomarker protein and pharmacological target


Autoři: Holger Hans Hermann Erb aff001;  Marlies Ebert aff001;  Ronja Kuhn aff001;  Lukas Donix aff002;  Axel Haferkamp aff001;  Robert Ian Seed aff004;  Eva Jüngel aff001
Působiště autorů: Department of Urology and Pediatric Urology, University Medical Center Mainz, Mainz, Germany aff001;  Department of Urology, Technische Universität Dresden, Dresden, Germany aff002;  National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany and Helmhol aff003;  Department of Pathology, University of California, San Francisco, California, United States of America aff004
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224085

Souhrn

Urothelial cancer (UC) is one of the most common cancers in Europe and is also one of the costliest to treat. When first line therapies show initial success, around 50% of cancers relapse and proceed to metastasis. In this study we assessed the Protein inhibitor of activated signal transducers and activators of transcription (PIAS)1 as a potential therapeutic target in urothelial cancer. PIAS1 is a key regulator of STAT1 signalling and may be implicated in carcinogenesis. In contrast to other cancer types PIAS1 protein expression is not significantly different in malignant areas of UC specimens compared to non-malignant tissue. In addition, we found that down-regulation and overexpression of PIAS1 had no effect on the viability or colony forming ability of tested cell lines. Whilst other studies of PIAS1 suggest an important biological role in cancer, this study shows that PIAS1 has no influence on reducing the cytotoxic effects of Cisplatin or cell recovery after DNA damage induced by irradiation. Taken together, these in vitro data demonstrate that PIAS1 is not a promising therapeutic target in UC cancer as previously shown in different entities such as prostate cancer (PCa).

Klíčová slova:

Cancer treatment – Cell viability testing – DNA damage – DNA repair – Hyperexpression techniques – Small interfering RNAs – Transfection – SUMOylation


Zdroje

1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International journal of cancer. 2010;127(12):2893–917. doi: 10.1002/ijc.25516 21351269.

2. Gakis G, Witjes JA, Comperat E, Cowan NC, De Santis M, Lebret T, et al. EAU guidelines on primary urethral carcinoma. Eur Urol. 2013;64(5):823–30. Epub 2013/04/16. doi: 10.1016/j.eururo.2013.03.044 23582479.

3. Zhang S, Yu YH, Zhang Y, Qu W, Li J. Radiotherapy in muscle-invasive bladder cancer: the latest research progress and clinical application. American journal of cancer research. 2015;5(2):854–68. 25973322.

4. Fojo T. Cancer, DNA repair mechanisms, and resistance to chemotherapy. Journal of the National Cancer Institute. 2001;93(19):1434–6. doi: 10.1093/jnci/93.19.1434 11584051.

5. Sakano S, Wada T, Matsumoto H, Sugiyama S, Inoue R, Eguchi S, et al. Single nucleotide polymorphisms in DNA repair genes might be prognostic factors in muscle-invasive bladder cancer patients treated with chemoradiotherapy. British journal of cancer. 2006;95(5):561–70. doi: 10.1038/sj.bjc.6603290 16880786.

6. Galanty Y, Belotserkovskaya R, Coates J, Polo S, Miller KM, Jackson SP. Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks. Nature. 2009;462(7275):935–9. doi: 10.1038/nature08657 20016603.

7. Ishiai M, Kimura M, Namikoshi K, Yamazoe M, Yamamoto K, Arakawa H, et al. DNA cross-link repair protein SNM1A interacts with PIAS1 in nuclear focus formation. Molecular and cellular biology. 2004;24(24):10733–41. doi: 10.1128/MCB.24.24.10733-10741.2004 15572677.

8. Shuai K, Liu B. Regulation of gene-activation pathways by PIAS proteins in the immune system. Nature reviews Immunology. 2005;5(8):593–605. doi: 10.1038/nri1667 16056253.

9. Puhr M, Hoefer J, Eigentler A, Dietrich D, van Leenders G, Uhl B, et al. PIAS1 is a determinant of poor survival and acts as a positive feedback regulator of AR signaling through enhanced AR stabilization in prostate cancer. Oncogene. 2016;35(18):2322–32. doi: 10.1038/onc.2015.292 26257066.

10. Puhr M, Hoefer J, Neuwirt H, Eder IE, Kern J, Schafer G, et al. PIAS1 is a crucial factor for prostate cancer cell survival and a valid target in docetaxel resistant cells. Oncotarget. 2014;5(23):12043–56. doi: 10.18632/oncotarget.2658 25474038.

11. Liu B, Tahk S, Yee KM, Yang R, Yang Y, Mackie R, et al. PIAS1 regulates breast tumorigenesis through selective epigenetic gene silencing. PloS one. 2014;9(2):e89464. doi: 10.1371/journal.pone.0089464 24586797.

12. Dadakhujaev S, Salazar-Arcila C, Netherton SJ, Chandhoke AS, Singla AK, Jirik FR, et al. A novel role for the SUMO E3 ligase PIAS1 in cancer metastasis. Oncoscience. 2014;1(3):229–40. doi: 10.18632/oncoscience.27 25594015.

13. Zaravinos A, Lambrou GI, Boulalas I, Delakas D, Spandidos DA. Identification of common differentially expressed genes in urinary bladder cancer. PloS one. 2011;6(4):e18135. doi: 10.1371/journal.pone.0018135 21483740.

14. Dyrskjot L, Kruhoffer M, Thykjaer T, Marcussen N, Jensen JL, Moller K, et al. Gene expression in the urinary bladder: a common carcinoma in situ gene expression signature exists disregarding histopathological classification. Cancer research. 2004;64(11):4040–8. doi: 10.1158/0008-5472.CAN-03-3620 15173019.

15. Kim WJ, Kim EJ, Kim SK, Kim YJ, Ha YS, Jeong P, et al. Predictive value of progression-related gene classifier in primary non-muscle invasive bladder cancer. Molecular cancer. 2010;9:3. doi: 10.1186/1476-4598-9-3 20059769.

16. Rane JK, Erb HH, Nappo G, Mann VM, Simms MS, Collins AT, et al. Inhibition of the glucocorticoid receptor results in an enhanced miR-99a/100-mediated radiation response in stem-like cells from human prostate cancers. Oncotarget. 2016. doi: 10.18632/oncotarget.10207 27340920.

17. Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nature protocols. 2006;1(5):2315–9. doi: 10.1038/nprot.2006.339 17406473.

18. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1. doi: 10.1126/scisignal.2004088 23550210.

19. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4. doi: 10.1158/2159-8290.CD-12-0095 22588877.

20. Hoefer J, Schafer G, Klocker H, Erb HH, Mills IG, Hengst L, et al. PIAS1 is increased in human prostate cancer and enhances proliferation through inhibition of p21. The American journal of pathology. 2012;180(5):2097–107. doi: 10.1016/j.ajpath.2012.01.026 22449952.

21. Wang H, Yang Y, Sharma N, Tarasova NI, Timofeeva OA, Winkler-Pickett RT, et al. STAT1 activation regulates proliferation and differentiation of renal progenitors. Cellular signalling. 2010;22(11):1717–26. doi: 10.1016/j.cellsig.2010.06.012 20624457.

22. Xia Y, Shen S, Verma IM. NF-kappaB, an active player in human cancers. Cancer immunology research. 2014;2(9):823–30. doi: 10.1158/2326-6066.CIR-14-0112

23. Bravo-Cordero JJ, Hodgson L, Condeelis J. Directed cell invasion and migration during metastasis. Curr Opin Cell Biol. 2012;24(2):277–83. Epub 2012/01/03. doi: 10.1016/j.ceb.2011.12.004 22209238.

24. Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. European journal of pharmacology. 2014;740:364–78. doi: 10.1016/j.ejphar.2014.07.025 25058905.

25. Bartek J, Hodny Z. SUMO boosts the DNA damage response barrier against cancer. Cancer cell. 2010;17(1):9–11. doi: 10.1016/j.ccr.2009.12.030 20129245.

26. Zhou BB, Elledge SJ. The DNA damage response: putting checkpoints in perspective. Nature. 2000;408(6811):433–9. doi: 10.1038/35044005 11100718.

27. Shima H, Suzuki H, Sun J, Kono K, Shi L, Kinomura A, et al. Activation of the SUMO modification system is required for the accumulation of RAD51 at sites of DNA damage. J Cell Sci. 2013;126(Pt 22):5284–92. Epub 2013/09/21. doi: 10.1242/jcs.133744 24046452.

28. Buch K, Peters T, Nawroth T, Sanger M, Schmidberger H, Langguth P. Determination of cell survival after irradiation via clonogenic assay versus multiple MTT Assay—a comparative study. Radiation oncology. 2012;7:1. doi: 10.1186/1748-717X-7-1

29. Chanda A, Sarkar A, Bonni S. The SUMO System and TGFbeta Signaling Interplay in Regulation of Epithelial-Mesenchymal Transition: Implications for Cancer Progression. Cancers (Basel). 2018;10(8). Epub 2018/08/12. doi: 10.3390/cancers10080264

30. Oo HZ, Seiler R, Black PC, Daugaard M. Post-translational modifications in bladder cancer: Expanding the tumor target repertoire. Urol Oncol. 2018. Epub 2018/10/22. doi: 10.1016/j.urolonc.2018.09.001 30342880.

31. Yin X, Xu C, Zheng X, Yuan H, Liu M, Qiu Y, et al. SnoN suppresses TGF-beta-induced epithelial-mesenchymal transition and invasion of bladder cancer in a TIF1gamma-dependent manner. Oncol Rep. 2016;36(3):1535–41. Epub 2016/07/20. doi: 10.3892/or.2016.4939

32. Tan M, Gong H, Wang J, Tao L, Xu D, Bao E, et al. SENP2 regulates MMP13 expression in a bladder cancer cell line through SUMOylation of TBL1/TBLR1. Sci Rep. 2015;5:13996. Epub 2015/09/16. doi: 10.1038/srep13996 26369384.

33. Tan M, Zhang D, Zhang E, Xu D, Liu Z, Qiu J, et al. SENP2 suppresses epithelial-mesenchymal transition of bladder cancer cells through deSUMOylation of TGF-betaRI. Mol Carcinog. 2017;56(10):2332–41. Epub 2017/06/03. doi: 10.1002/mc.22687

34. Nishida T, Yasuda H. PIAS1 and PIASxalpha function as SUMO-E3 ligases toward androgen receptor and repress androgen receptor-dependent transcription. The Journal of biological chemistry. 2002;277(44):41311–7. doi: 10.1074/jbc.M206741200

35. Abe J. Multiple Functions of Protein Inhibitor of Activated STAT1 in Regulating Endothelial Cell Proliferation and Inflammation. Arteriosclerosis, thrombosis, and vascular biology. 2016;36(9):1717–9. doi: 10.1161/ATVBAHA.116.308131 27559144.

36. Tubbs A, Nussenzweig A. Endogenous DNA Damage as a Source of Genomic Instability in Cancer. Cell. 2017;168(4):644–56. doi: 10.1016/j.cell.2017.01.002 28187286.

37. Chanda A, Chan A, Deng L, Kornaga EN, Enwere EK, Morris DG, et al. Identification of the SUMO E3 ligase PIAS1 as a potential survival biomarker in breast cancer. PloS one. 2017;12(5):e0177639. doi: 10.1371/journal.pone.0177639 28493978.

38. Bogachek MV, Park JM, De Andrade JP, Lorenzen AW, Kulak MV, White JR, et al. Inhibiting the SUMO Pathway Represses the Cancer Stem Cell Population in Breast and Colorectal Carcinomas. Stem cell reports. 2016;7(6):1140–51. doi: 10.1016/j.stemcr.2016.11.001 27916539.

39. Coppola D, Parikh V, Boulware D, Blanck G. Substantially reduced expression of PIAS1 is associated with colon cancer development. Journal of cancer research and clinical oncology. 2009;135(9):1287–91. doi: 10.1007/s00432-009-0570-z 19288270.

40. Lee JS, Choi HJ, Baek SH. Sumoylation and Its Contribution to Cancer. Adv Exp Med Biol. 2017;963:283–98. Epub 2017/02/16. doi: 10.1007/978-3-319-50044-7_17 28197919.

41. Kahyo T, Nishida T, Yasuda H. Involvement of PIAS1 in the sumoylation of tumor suppressor p53. Molecular cell. 2001;8(3):713–8. doi: 10.1016/s1097-2765(01)00349-5 11583632.

42. Munarriz E, Barcaroli D, Stephanou A, Townsend PA, Maisse C, Terrinoni A, et al. PIAS-1 is a checkpoint regulator which affects exit from G1 and G2 by sumoylation of p73. Molecular and cellular biology. 2004;24(24):10593–610. doi: 10.1128/MCB.24.24.10593-10610.2004 15572666.

43. Puig P, Capodieci P, Drobnjak M, Verbel D, Prives C, Cordon-Cardo C, et al. p73 Expression in human normal and tumor tissues: loss of p73alpha expression is associated with tumor progression in bladder cancer. Clin Cancer Res. 2003;9(15):5642–51. Epub 2003/12/05. 14654547.

44. Marum L. Cancer Cell Line Encyclopedia launched by Novartis and Broad Institute. Future Med Chem. 2012;4(8):947. Epub 2012/07/26. 22826900.

45. Kelland L. The resurgence of platinum-based cancer chemotherapy. Nature reviews Cancer. 2007;7(8):573–84. doi: 10.1038/nrc2167 17625587.

46. Tsuge M, Kaneoka H, Masuda Y, Ito H, Miyake K, Iijima S. Implication of SUMO E3 ligases in nucleotide excision repair. Cytotechnology. 2015;67(4):681–7. doi: 10.1007/s10616-014-9762-8 25008297.

47. Mouw KW. DNA Repair Pathway Alterations in Bladder Cancer. Cancers (Basel). 2017;9(4). Epub 2017/03/28. doi: 10.3390/cancers9040028 28346378.

48. Wang R, Huang S, Fu X, Huang G, Yan X, Yue Z, et al. The conserved ancient role of chordate PIAS as a multilevel repressor of the NF-kappaB pathway. Sci Rep. 2017;7(1):17063. Epub 2017/12/08. doi: 10.1038/s41598-017-16624-7


Článek vyšel v časopise

PLOS One


2019 Číslo 10