Factors associated with muscle mass in community-dwelling older people in Singapore: Findings from the SHIELD study

Autoři: Siew Ling Tey aff001;  Samuel Teong Huang Chew aff002;  Choon How How aff003;  Menaka Yalawar aff005;  Geraldine Baggs aff006;  Wai Leng Chow aff007;  Magdalin Cheong aff008;  Rebecca Hui San Ong aff007;  Farah Safdar Husain aff009;  Shuyi Charmaine Kwan aff009;  Cynthia Yan Ling Tan aff009;  Yen Ling Low aff001;  Ngiap Chuan Tan aff004;  Dieu Thi Thu Huynh aff001
Působiště autorů: Abbott Nutrition Research and Development, Asia-Pacific Center, Singapore aff001;  Department of Geriatric Medicine, Changi General Hospital, Singapore aff002;  Care and Health Integration, Changi General Hospital, Singapore aff003;  SingHealth-Duke NUS Family Medicine Academic Clinical Program, Singapore aff004;  Statistical Services, Cognizant Technologies Solution Pvt. Ltd., Bangalore, India aff005;  Abbott Nutrition Research and Development, Columbus, Ohio, United States of America aff006;  Health Services Research, Changi General Hospital, Singapore aff007;  Department of Dietetic & Food Services, Changi General Hospital, Singapore aff008;  SingHealth Polyclinics, Singapore aff009
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223222



Aging is associated with low muscle mass and has been linked to adverse health outcomes. The objectives of this cross-sectional study were: (1) to describe anthropometry, body composition, appendicular skeletal muscle mass index (ASMI; appendicular skeletal muscle mass/height2), and prevalence of low ASMI in older people with normal nutritional status (Malnutrition Universal Screening Tool score = 0); (2) to determine factors associated with ASMI, and odds ratios of having low ASMI.


SHIELD is a study of community-dwelling older people aged 65 years and above in Singapore. ASMI was determined using bioelectrical impedance analysis and low ASMI was defined as <7.0 kg/m2 for males and <5.7 kg/m2 for females (Asian Working Group for Sarcopenia, 2014).


A total of 400 older people (183 males and 217 females) took part in this study. The overall prevalence of low ASMI was 20.6% (15.5% in males and 24.9% in females). Females had significantly lower ASMI than males (P < 0.0001), age was inversely associated with ASMI (P = 0.0024) while BMI and calf circumference were positively associated with ASMI (both P < 0.0001) in the total cohort. In addition, ASMI was positively associated with bone mass in both genders (both P < 0.0001). After adjusting for covariates, the odds ratios of having low ASMI with every 1 year and 10 years increase in age were 1.13 (95% CI: 1.06, 1.20) and 3.36 (95% CI: 1.82, 6.21) respectively.


The high prevalence of low ASMI in community-dwelling older people with normal nutritional status highlights the need for early screening. There was a strong inverse association between age and ASMI while BMI, calf circumference and bone mass were positively associated with ASMI. These findings will give further weight to the importance and development of public health strategies in maintaining and improving muscle health in this population group.

Klíčová slova:

Body Mass Index – Elderly – Malnutrition – Physical activity – Sarcopenia – Skeletal muscles


1. World Health Organization, Global health and aging. 2011.

2. Rosenberg IH. Sarcopenia: origins and clinical relevance. J Nutr. 1997; 127: 990S–991S. doi: 10.1093/jn/127.5.990S 9164280

3. Cruz-Jentoft AJ, Sayer AA, Schneider SM, Sieber CC, Topinkova E, Vandewoude M, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019; 48: 16–31. doi: 10.1093/ageing/afy169 30312372

4. Jang IY, Jung HW, Lee CK, Yu SS, Lee YS, Lee E. Comparisons of predictive values of sarcopenia with different muscle mass indices in Korean rural older adults: a longitudinal analysis of the Aging Study of PyeongChang Rural Area. Clin Interv Aging. 2018; 13: 91–99. doi: 10.2147/CIA.S155619 29391783

5. Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc. 2002; 50: 889–896. doi: 10.1046/j.1532-5415.2002.50216.x 12028177

6. Moon SS. Low skeletal muscle mass is associated with insulin resistance, diabetes, and metabolic syndrome in the Korean population: the Korea National Health and Nutrition Examination Survey (KNHANES) 2009–2010. Endocr J. 2014; 61: 61–70. doi: 10.1507/endocrj.ej13-0244 24088600

7. Sampaio RA, Sewo Sampaio PY, Yamada M, Yukutake T, Uchida MC, Tsuboyama T, et al. Arterial stiffness is associated with low skeletal muscle mass in Japanese community-dwelling older adults. Geriatr Gerontol Int. 2014; 14 Suppl 1: 109–114.

8. Tanimoto Y, Watanabe M, Sun W, Hirota C, Sugiura Y, Kono R, et al. Association between muscle mass and disability in performing instrumental activities of daily living (IADL) in community-dwelling elderly in Japan. Arch Gerontol Geriatr. 2012; 54: e230–233. doi: 10.1016/j.archger.2011.06.015 21831461

9. Buckinx F, Landi F, Cesari M, Fielding RA, Visser M, Engelke K, et al. Pitfalls in the measurement of muscle mass: a need for a reference standard. J Cachexia Sarcopenia Muscle. 2018; 9: 269–278. doi: 10.1002/jcsm.12268 29349935

10. Chen L-K, Liu L-K, Woo J, Assantachai P, Auyeung T-W, Bahyah KS, et al. Sarcopenia in Asia: consensus report of the Asian Working Group for sarcopenia. J Am Med Dir Assoc. 2014; 15: 95–101. doi: 10.1016/j.jamda.2013.11.025 24461239

11. Seino S, Shinkai S, Iijima K, Obuchi S, Fujiwara Y, Yoshida H, et al. Reference values and age differences in body composition of community-dwelling older Japanese men and women: A pooled analysis of four cohort studies. PLoS One. 2015; 10: e0131975. doi: 10.1371/journal.pone.0131975 26147341

12. Cheng Q, Zhu X, Zhang X, Li H, Du Y, Hong W, et al. A cross-sectional study of loss of muscle mass corresponding to sarcopenia in healthy Chinese men and women: reference values, prevalence, and association with bone mass. J Bone Miner Metab. 2014; 32: 78–88. doi: 10.1007/s00774-013-0468-3 23620096

13. Hayashida I, Tanimoto Y, Takahashi Y, Kusabiraki T, Tamaki J. Correlation between muscle strength and muscle mass, and their association with walking speed, in community-dwelling elderly Japanese individuals. PLoS One. 2014; 9: e111810. doi: 10.1371/journal.pone.0111810 25365291

14. Makizako H, Shimada H, Doi T, Tsutsumimoto K, Lee S, Lee SC, et al. Age-dependent changes in physical performance and body composition in community-dwelling Japanese older adults. J Cachexia Sarcopenia Muscle. 2017; 8: 607–614. doi: 10.1002/jcsm.12197 28597612

15. Huh JH, Song MK, Park KH, Kim KJ, Kim JE, Rhee YM, et al. Gender-specific pleiotropic bone-muscle relationship in the elderly from a nationwide survey (KNHANES IV). Osteoporos Int. 2014; 25: 1053–1061. doi: 10.1007/s00198-013-2531-2 24150214

16. Liu LK, Lee WJ, Liu CL, Chen LY, Lin MH, Peng LN, et al. Age-related skeletal muscle mass loss and physical performance in Taiwan: implications to diagnostic strategy of sarcopenia in Asia. Geriatr Gerontol Int. 2013; 13: 964–971. doi: 10.1111/ggi.12040 23452090

17. Pongchaiyakul C, Limpawattana P, Kotruchin P, Rajatanavin R. Prevalence of sarcopenia and associated factors among Thai population. J Bone Miner Metab. 2013; 31: 346–350. doi: 10.1007/s00774-013-0422-4 23377622

18. Bloom I, Shand C, Cooper C, Robinson S, Baird J. Diet quality and sarcopenia in older adults: a systematic review. Nutrients. 2018; 10: 308.

19. Chen LK, Lee WJ, Peng LN, Liu LK, Arai H, Akishita M, et al. Recent advances in sarcopenia research in Asia: 2016 update From the Asian Working Group for Sarcopenia. J Am Med Dir Assoc. 2016; 17: 767 e761–767.

20. Morley JE, Bauer JM. Nutrition and aging successfully. Curr Opin Clin Nutr Metab Care. 2017; 20: 1–3. doi: 10.1097/MCO.0000000000000330 27749710

21. Ryu M, Jo J, Lee Y, Chung YS, Kim KM, Baek WC. Association of physical activity with sarcopenia and sarcopenic obesity in community-dwelling older adults: the Fourth Korea National Health and Nutrition Examination Survey. Age Ageing. 2013; 42: 734–740. doi: 10.1093/ageing/aft063 23761456

22. Shephard RJ, Park H, Park S, Aoyagi Y. Objectively measured physical activity and progressive loss of lean tissue in older Japanese adults: longitudinal data from the Nakanojo study. J Am Geriatr Soc. 2013; 61: 1887–1893. doi: 10.1111/jgs.12505 24219190

23. Kawakami R, Murakami H, Sanada K, Tanaka N, Sawada SS, Tabata I, et al. Calf circumference as a surrogate marker of muscle mass for diagnosing sarcopenia in Japanese men and women. Geriatr Gerontol Int. 2015; 15: 969–976. doi: 10.1111/ggi.12377 25243821

24. Kim S, Kim M, Lee Y, Kim B, Yoon TY, Won CW. Calf circumference as a simple screening marker for diagnosing sarcopenia in older Korean adults: the Korean Frailty and Aging Cohort Study (KFACS). J Korean Med Sci. 2018; 33: e151. doi: 10.3346/jkms.2018.33.e151 29760608

25. Maeda K, Koga T, Nasu T, Takaki M, Akagi J. Predictive accuracy of calf circumference measurements to detect decreased skeletal muscle mass and European Society for Clinical Nutrition and Metabolism-defined malnutrition in hospitalized older patients. Ann Nutr Metab. 2017; 71: 10–15. doi: 10.1159/000478707 28647743

26. Tsai AC-H, Lai M-C, Chang T-L. Mid-arm and calf circumferences (MAC and CC) are better than body mass index (BMI) in predicting health status and mortality risk in institutionalized elderly Taiwanese. Arch Gerontol Geriatr. 2012; 54: 443–447. doi: 10.1016/j.archger.2011.05.015 21663980

27. Han P, Kang L, Guo Q, Wang J, Zhang W, Shen S, et al. Prevalence and factors associated with sarcopenia in suburb-dwelling older Chinese using the Asian Working Group for Sarcopenia definition. J Gerontol A Biol Sci Med Sci. 2016; 71: 529–535. doi: 10.1093/gerona/glv108 26286608

28. Lau EMC, Lynn HSH, Woo JW, Kwok TCY, Melton LJI. Prevalence of and risk factors for sarcopenia in elderly Chinese men and women. J Gerontol. 2005; 60A: 213–216.

29. Xu H-q, Shi J-p, Shen C, Liu Y, Liu J-M, Zheng X-y. Sarcopenia-related features and factors associated with low muscle mass, weak muscle strength, and reduced function in Chinese rural residents: a cross-sectional study. Arch Osteoporos. 2019; 14: 2.

30. Kim S, Won CW, Kim BS, Choi HR, Moon MY. The association between the low muscle mass and osteoporosis in elderly Korean people. J Korean Med Sci. 2014; 29: 995–1000. doi: 10.3346/jkms.2014.29.7.995 25045234

31. Novotny SA, Warren GL, Hamrick MW. Aging and the muscle-bone relationship. Physiology (Bethesda). 2015; 30: 8–16.

32. Biben V, Defi IR, Nugraha GI, Setiabudia B. Vitamin D status and its impact on body composition in elderly community-dwelling individuals in Bandung and Sumedang, West Java Province, Indonesia. Asian Journal of Epidemiology. 2017; 10: 63–69.

33. Kim MK, Baek KH, Song KH, Il Kang M, Park CY, Lee WY, et al. Vitamin D deficiency is associated with sarcopenia in older Koreans, regardless of obesity: the Fourth Korea National Health and Nutrition Examination Surveys (KNHANES IV) 2009. J Clin Endocrinol Metab. 2011; 96: 3250–3256. doi: 10.1210/jc.2011-1602 21832109

34. Ko MJ, Yun S, Oh K, Kim K. Relation of serum 25-hydroxyvitamin D status with skeletal muscle mass by sex and age group among Korean adults. Br J Nutr. 2015; 114: 1838–1844. doi: 10.1017/S0007114515003633 26420417

35. Liu G, Lu L, Sun Q, Ye X, Sun L, Liu X, et al. Poor vitamin D status is prospectively associated with greater muscle mass loss in middle-aged and elderly Chinese individuals. J Acad Nutr Diet. 2014; 114: 1544–1551 e1542. doi: 10.1016/j.jand.2014.05.012 25037556

36. Meng L, Man Q, Yuan L, Shen L, Li W, Guo G, et al. Serum 25-hydroxyvitamin D and elderly skeletal muscle mass and function in urban north China. Asia Pac J Clin Nutr. 2017; 26: 849–855. doi: 10.6133/apjcn.072016.13 28802294

37. Yoo JI, Ha YC, Choi H, Kim KH, Lee YK, Koo KH, et al. Malnutrition and chronic inflammation as risk factors for sarcopenia in elderly patients with hip fracture. Asia Pac J Clin Nutr. 2018; 27: 527–532. doi: 10.6133/apjcn.082017.02 29737798

38. Cereda E, Pedrolli C, Klersy C, Bonardi C, Quarleri L, Cappello S, et al. Nutritional status in older persons according to healthcare setting: A systematic review and meta-analysis of prevalence data using MNA. Clin Nutr. 2016; 35: 1282–1290. doi: 10.1016/j.clnu.2016.03.008 27086194

39. Charlson M, Szatrowski TP, Peterson J, Gold J. Validation of a combined comorbidity index. J Clin Epidemiol. 1994; 47: 1245–1251. doi: 10.1016/0895-4356(94)90129-5 7722560

40. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J Chronic Dis. 1987; 40: 373–383. doi: 10.1016/0021-9681(87)90171-8 3558716

41. Stratton RJ, Hackston A, Longmore D, Dixon R, Price S, Stroud M, et al. Malnutrition in hospital outpatients and inpatients: prevalence, concurrent validity and ease of use of the ‘malnutrition universal screening tool’ (‘MUST’) for adults. Br J Nutr. 2004; 92: 799–808. doi: 10.1079/bjn20041258 15533269

42. Holick MF. Vitamin D deficiency. N Engl J Med. 2007; 357: 266–281. doi: 10.1056/NEJMra070553 17634462

43. Levey AS, Stevens LA, Schmid CH, Zhang Y, Castro AF III, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009; 150: 604–612. doi: 10.7326/0003-4819-150-9-200905050-00006 19414839

44. Ismail N, Hairi F, Choo WY, Hairi NN, Peramalah D, Bulgiba A. The Physical Activity Scale for the Elderly (PASE): validity and reliability among community-dwelling older adults in Malaysia. Asia Pacific Journal of Public Health. 2015; 27: 62S–72S. doi: 10.1177/1010539515590179 26058900

45. Washburn RA, Smith KW, Jette AM, Janney CA. The Physical Activity Scale for the Elderly (PASE): Development and evaluation. J Clin Epidemiol. 1993; 46: 153–162. doi: 10.1016/0895-4356(93)90053-4 8437031

46. Shah S, Vanclay F, Cooper B. Improving the sensitivity of the Barthel Index for stroke rehabilitation. J Clin Epidemiol. 1989; 42: 703–709. doi: 10.1016/0895-4356(89)90065-6 2760661

47. Carlson BW. Simpson’s Paradox. In Encyclopaedia Brittanica. 2019; Available from: https://www.britannica.com/topic/Simpsons-paradox.

48. Singapore Department of Statistics, Population trends 2018. 2018, Singapore Department of Statistics.

49. Shimokata H, Ando F, Yuki A, Otsuka R. Age-related changes in skeletal muscle mass among community-dwelling Japanese: a 12-year longitudinal study. Geriatr Gerontol Int. 2014; 14 Suppl 1: 85–92.

50. Zeng P, Wu S, Han Y, Liu J, Zhang Y, Zhang E, et al. Differences in body composition and physical functions associated with sarcopenia in Chinese elderly: reference values and prevalence. Arch Gerontol Geriatr. 2015; 60: 118–123. doi: 10.1016/j.archger.2014.08.010 25440136

51. Wang H, Hai S, Liu YX, Cao L, Liu Y, Liu P, et al. Associations between sarcopenic obesity and cognitive impairment in elderly Chinese community-dwelling individuals. J Nutr Health Aging. 2019; 23: 14–20. doi: 10.1007/s12603-018-1088-3 30569063

52. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010; 39: 412–423. doi: 10.1093/ageing/afq034 20392703

53. Yamada M, Nishiguchi S, Fukutani N, Tanigawa T, Yukutake T, Kayama H, et al. Prevalence of sarcopenia in community-dwelling Japanese older adults. J Am Med Dir Assoc. 2013; 14: 911–915. doi: 10.1016/j.jamda.2013.08.015 24094646

54. Ishii S, Tanaka T, Shibasaki K, Ouchi Y, Kikutani T, Higashiguchi T, et al. Development of a simple screening test for sarcopenia in older adults. Geriatr Gerontol Int. 2014; 14 Suppl 1: 93–101.

55. Yap KB, Niti M, Ng TP. Nutrition screening among community-dwelling older adults in Singapore. Singapore Med J. 2007; 48: 911–916. 17909675

56. Auyeung TW, Lee SW, Leung J, Kwok T, Woo J. Age-associated decline of muscle mass, grip strength and gait speed: a 4-year longitudinal study of 3018 community-dwelling older Chinese. Geriatr Gerontol Int. 2014; 14 Suppl 1: 76–84.

57. Hong S, Choi WH. The effects of sarcopenia and obesity on femur neck bone mineral density in elderly Korean men and women. Osteoporos Sarcopenia. 2016; 2: 103–109. doi: 10.1016/j.afos.2016.04.002 30775475

58. Kanehisa H, Fukunaga T. Association between body mass index and muscularity in healthy older Japanese women and men. J Physiol Anthropol. 2013; 32: 4–4. doi: 10.1186/1880-6805-32-4 23497554

59. Al Snih S, Ottenbacher KJ, Markides KS, Kuo Y-F, Eschbach K, Goodwin JS. The effect of obesity on disability vs mortality in older Americans. JAMA Internal Medicine. 2007; 167: 774–780.

60. Batsis JA, Singh S, Lopez-Jimenez F. Anthropometric measurements and survival in older Americans: Results from the third national health and nutrition examination survey. J Nutr Health Aging. 2014; 18: 123–130. doi: 10.1007/s12603-013-0366-3 24522462

61. Flicker L, McCaul KA, Hankey GJ, Jamrozik K, Brown WJ, Byles JE, et al. Body mass index and survival in men and women aged 70 to 75. J Am Geriatr Soc. 2010; 58: 234–241. doi: 10.1111/j.1532-5415.2009.02677.x 20370857

62. Batsis JA, Villareal DT. Sarcopenic obesity in older adults: aetiology, epidemiology and treatment strategies. Nat Rev Endocrinol. 2018; 14: 513–537. doi: 10.1038/s41574-018-0062-9 30065268

63. Deutz NEP, Ashurst I, Ballesteros MD, Bear DE, Cruz-Jentoft AJ, Genton L, et al. The underappreciated role of low muscle mass in the management of malnutrition. J Am Med Dir Assoc. 2019; 20: 22–27. doi: 10.1016/j.jamda.2018.11.021 30580819

64. Landi F, Camprubi-Robles M, Bear DE, Cederholm T, Malafarina V, Welch AA, et al. Muscle loss: The new malnutrition challenge in clinical practice. Clin Nutr. 2018.

65. Brotto M, Bonewald L. Bone and muscle: Interactions beyond mechanical. Bone. 2015; 80: 109–114. doi: 10.1016/j.bone.2015.02.010 26453500

66. Curtis E, Litwic A, Cooper C, Dennison E. Determinants of muscle and bone aging. J Cell Physiol. 2015; 230: 2618–2625. doi: 10.1002/jcp.25001 25820482

67. Maurel DB, Jahn K, Lara-Castillo N. Muscle-bone crosstalk: Emerging opportunities for novel therapeutic approaches to treat musculoskeletal pathologies. Biomedicines. 2017; 5: E62. doi: 10.3390/biomedicines5040062 29064421

68. Lee SY, Tung HH, Liu CY, Chen LK. Physical activity and sarcopenia in the geriatric population: A systematic review. J Am Med Dir Assoc. 2018; 19: 378–383. doi: 10.1016/j.jamda.2018.02.003 29580886

69. Beaudart C, Dawson A, Shaw SC, Harvey NC, Kanis JA, Binkley N, et al. Nutrition and physical activity in the prevention and treatment of sarcopenia: systematic review. Osteoporos Int. 2017; 28: 1817–1833. doi: 10.1007/s00198-017-3980-9 28251287

70. Bear DE, Langan A, Dimidi E, Wandrag L, Harridge SDR, Hart N, et al. β-Hydroxy-β-methylbutyrate and its impact on skeletal muscle mass and physical function in clinical practice: a systematic review and meta-analysis. Am J Clin Nutr. 2019; 109: 1119–1132. doi: 10.1093/ajcn/nqy373 30982854

71. Volkert D, Beck AM, Cederholm T, Cruz-Jentoft A, Goisser S, Hooper L, et al. ESPEN guideline on clinical nutrition and hydration in geriatrics. Clin Nutr. 2019; 38: 10–47. doi: 10.1016/j.clnu.2018.05.024 30005900

72. World Health Organization, Integrated care for older people: guidelines on community-level interventions to manage declines in intrinsic capacity. 2017, World Health Organization: Geneva.

73. Hanach NI, McCullough F, Avery A. The impact of dairy protein intake on muscle mass, muscle strength, and physical performance in middle-aged to older adults with or without existing sarcopenia: A systematic review and meta-analysis. Adv Nutr. 2019; 10: 59–69. doi: 10.1093/advances/nmy065 30624580

74. Wu H, Xia Y, Jiang J, Du H, Guo X, Liu X, et al. Effect of beta-hydroxy-beta-methylbutyrate supplementation on muscle loss in older adults: A systematic review and meta-analysis. Arch Gerontol Geriatr. 2015; 61: 168–175. doi: 10.1016/j.archger.2015.06.020 26169182

75. Bauer JM, Verlaan S, Bautmans I, Brandt K, Donini LM, Maggio M, et al. Effects of a vitamin D and leucine-enriched whey protein nutritional supplement on measures of sarcopenia in older adults, the PROVIDE study: a randomized, double-blind, placebo-controlled trial. J Am Med Dir Assoc. 2015; 16: 740–747. doi: 10.1016/j.jamda.2015.05.021 26170041

76. Dent E, Morley JE, Cruz-Jentoft AJ, Arai H, Kritchevsky SB, Guralnik J, et al. International Clinical Practice Guidelines for Sarcopenia (ICFSR): Screening, diagnosis and management. J Nutr Health Aging. 2018; 22: 1148–1161. doi: /10.1007/s12603-018-1139-9 30498820

77. Deutz NEP, Bauer JM, Barazzoni R, Biolo G, Boirie Y, Bosy-Westphal A, et al. Protein intake and exercise for optimal muscle function with aging: Recommendations from the ESPEN Expert Group. Clin Nutr. 2014; 33: 929–936. doi: 10.1016/j.clnu.2014.04.007 24814383

78. Dewansingh P, Melse-Boonstra A, Krijnen WP, van der Schans CP, Jager-Wittenaar H, van den Heuvel E. Supplemental protein from dairy products increases body weight and vitamin D improves physical performance in older adults: a systematic review and meta-analysis. Nutr Res. 2018; 49: 1–22. doi: 10.1016/j.nutres.2017.08.004 29420989

79. Sanz-Paris A, Camprubi-Robles M, Lopez-Pedrosa JM, Pereira SL, Rueda R, Ballesteros-Pomar MD, et al. Role of oral nutritional supplements enriched with beta-hydroxy-beta-methylbutyrate in maintaining muscle function and improving clinical outcomes in various clinical settings. J Nutr Health Aging. 2018; 22: 664–675. doi: 10.1007/s12603-018-0995-7 29806855

80. Woo J. Nutritional interventions in sarcopenia: where do we stand? Curr Opin Clin Nutr Metab Care. 2018; 21: 19–23. doi: 10.1097/MCO.0000000000000432 29045254

81. Komar B, Schwingshackl L, Hoffmann G. Effects of leucine-rich protein supplements on anthropometric parameter and muscle strength in the elderly: a systematic review and meta-analysis. J Nutr Health Aging. 2015; 19: 437–446. doi: 10.1007/s12603-014-0559-4 25809808

82. Benedetti MG, Furlini G, Zati A, Letizia Mauro G. The effectiveness of physical exercise on bone density in osteoporotic patients. Biomed Res Int. 2018; 2018: 4840531. doi: 10.1155/2018/4840531 30671455

83. Zou L, Wang C, Chen K, Shu Y, Chen X, Luo L, et al. The effect of taichi practice on attenuating bone mineral density loss: A systematic review and meta-analysis of randomized controlled trials. Int J Environ Res Public Health. 2017; 14.

84. Reid IR, Bolland MJ, Grey A. Effects of vitamin D supplements on bone mineral density: a systematic review and meta-analysis. The Lancet. 2014; 383: 146–155.

85. Shams-White MM, Chung M, Du M, Fu Z, Insogna KL, Karlsen MC, et al. Dietary protein and bone health: a systematic review and meta-analysis from the National Osteoporosis Foundation. Am J Clin Nutr. 2017; 105: 1528–1543. doi: 10.3945/ajcn.116.145110 28404575

86. Tai V, Leung W, Grey A, Reid IR, Bolland MJ. Calcium intake and bone mineral density: systematic review and meta-analysis. BMJ. 2015; 351: h4183. doi: 10.1136/bmj.h4183 26420598

87. Park H, Park S, Shephard RJ, Aoyagi Y. Yearlong physical activity and sarcopenia in older adults: the Nakanojo Study. Eur J Appl Physiol. 2010; 109: 953–961. doi: 10.1007/s00421-010-1424-8 20336310

88. Foong YC, Chherawala N, Aitken D, Scott D, Winzenberg T, Jones G. Accelerometer-determined physical activity, muscle mass, and leg strength in community-dwelling older adults. J Cachexia Sarcopenia Muscle. 2016; 7: 275–283. doi: 10.1002/jcsm.12065 27239404

89. Chen J, Yun C, He Y, Piao J, Yang L, Yang X. Vitamin D status among the elderly Chinese population: a cross-sectional analysis of the 2010–2013 China national nutrition and health survey (CNNHS). Nutr J. 2017; 16: 3. doi: 10.1186/s12937-016-0224-3 28088200

90. Cheng Q, Du Y, Hong W, Tang W, Li H, Chen M, et al. Factors associated to serum 25-hydroxyvitamin D levels among older adult populations in urban and suburban communities in Shanghai, China. BMC Geriatr. 2017; 17: 246. doi: 10.1186/s12877-017-0632-z 29065856

91. Huang CH, Huang YA, Lai YC, Sun CK. Prevalence and predictors of hypovitaminosis D among the elderly in subtropical region. PLoS One. 2017; 12: e0181063. doi: 10.1371/journal.pone.0181063 28759618

92. Sergi G, De Rui M, Stubbs B, Veronese N, Manzato E. Measurement of lean body mass using bioelectrical impedance analysis: a consideration of the pros and cons. Aging Clin Exp Res. 2017; 29: 591–597. doi: 10.1007/s40520-016-0622-6 27568020

93. Yamada Y, Nishizawa M, Uchiyama T, Kasahara Y, Shindo M, Miyachi M, et al. Developing and validating an age-independent equation using multi-frequency bioelectrical impedance analysis for estimation of appendicular skeletal muscle mass and establishing a cutoff for sarcopenia. Int J Environ Res Public Health. 2017; 14: 809.

Článek vyšel v časopise


2019 Číslo 10