Kinematic and electromyographic analysis of variations in Nordic hamstring exercise


Autoři: Nejc Šarabon aff001;  Jan Marušič aff001;  Goran Marković aff003;  Žiga Kozinc aff001
Působiště autorů: University of Primorska, Faculty of Health Sciences, Izola, Slovenia aff001;  S2P, Science to practice, Ltd., Laboratory for Motor Control and Motor Behavior, Ljubljana, Slovenia aff002;  University of Zagreb, Faculty of Kinesiology, Zagreb, Croatia aff003;  Motus Melior Ltd., Zagreb, Croatia aff004;  University of Primorska, Andrej Marušič Institute, Koper, Slovenia aff005
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223437

Souhrn

The purpose of this study was to present and biomechanically evaluate several variations of the Nordic hamstring exercise (NHE), achieved by altering the slope of the lower leg support and by asumming different hip flexion angles. Electromyographic and 2D kinematic measurements were conducted to analyse muscle activity (biceps femoris, semitendinosus, gluteus maximus, erector spine and lateral head of the gastrocnemius), knee and hip joint torques during 6 variations of NHE. The study involved 18 adults (24.9 ± 3.7 years) with previous experience in resistance training, but with little or no experience with NHE. Increasing the slope of the lower leg support from 0° (standard NHE) to 20° and 40° enabled the participants to perform the exercise through a larger range of motion, while achieving similar peak knee and hip torques. Instructions for increased hip flexion from 0° (standard NHE) to 25°, 50° and 75° resulted in greater peak knee and hip torque, although the participants were not able to maintain the hip angle at 50° nor 75°. Muscle activity decreased or remained similar in all modified variations compared to the standard NHE for all measured muscles. Our results suggest that using the presented variations of NHE might contribute to optimization of hamstring injury prevention and rehabilitation programs, by providing appropriate difficulty for the individual’s strength level and also allow eccentric strengthening at longer hamstring lengths.

Klíčová slova:

Electromyography – Hip – Knee joints – Knees – Legs – Muscle analysis – Strength training – Torque


Zdroje

1. Al Attar WSA, Soomro N, Sinclair PJ, Pappas E, Sanders RH. Effect of Injury Prevention Programs that Include the Nordic Hamstring Exercise on Hamstring Injury Rates in Soccer Players: A Systematic Review and Meta-Analysis. Sport Med. 2017;47: 907–916. doi: 10.1007/s40279-016-0638-2 27752982

2. Petersen J, Thorborg K, Nielsen MB, Budtz-Jørgensen E, Hölmich P. Preventive Effect of Eccentric Training on Acute Hamstring Injuries in Men’s Soccer. Am J Sports Med. 2011;39: 2296–2303. doi: 10.1177/0363546511419277 21825112

3. Delahunt E, McGroarty M, De Vito G, Ditroilo M. Nordic hamstring exercise training alters knee joint kinematics and hamstring activation patterns in young men. Eur J Appl Physiol. 2016;116: 663–72. doi: 10.1007/s00421-015-3325-3 26754149

4. Iga J, Fruer CS, Deighan M, Croix MDS, James DVB. “Nordic” hamstrings exercise—engagement characteristics and training responses. Int J Sports Med. 2012;33: 1000–4. doi: 10.1055/s-0032-1304591 22895870

5. Mjolsnes R, Arnason A, osthagen T, Raastad T, Bahr R. A 10-week randomized trial comparing eccentric vs. concentric hamstring strength training in well-trained soccer players. Scand J Med Sci Sport. 2004;14: 311–317. doi: 10.1046/j.1600-0838.2003.367.x 15387805

6. Alonso-Fernandez D, Docampo-Blanco P, Martinez-Fernandez J. Changes in muscle architecture of biceps femoris induced by eccentric strength training with nordic hamstring exercise. Scand J Med Sci Sports. 2018;28: 88–94. doi: 10.1111/sms.12877 28314091

7. Bourne MN, Duhig SJ, Timmins RG, Williams MD, Opar DA, Al Najjar A, et al. Impact of the Nordic hamstring and hip extension exercises on hamstring architecture and morphology: implications for injury prevention. Br J Sports Med. 2017;51: 469–477. doi: 10.1136/bjsports-2016-096130 27660368

8. Guex K, Degache F, Morisod C, Sailly M, Millet GP. Hamstring Architectural and Functional Adaptations Following Long vs. Short Muscle Length Eccentric Training. Front Physiol. 2016;7: 340. doi: 10.3389/fphys.2016.00340 27536252

9. Potier TG, Alexander CM, Seynnes OR. Effects of eccentric strength training on biceps femoris muscle architecture and knee joint range of movement. Eur J Appl Physiol. 2009;105: 939–44. doi: 10.1007/s00421-008-0980-7 19271232

10. Ribeiro-Alvares JB, Marques VB, Vaz MA, Baroni BM. Four Weeks of Nordic Hamstring Exercise Reduce Muscle Injury Risk Factors in Young Adults. J strength Cond Res. 2018;32: 1254–1262. doi: 10.1519/JSC.0000000000001975 28459795

11. Timmins RG, Ruddy JD Presland J, Maniar N, Shield AJ, Williams MD, et al. Architectural Changes of the Biceps Femoris Long Head after Concentric or Eccentric Training. Med Sci Sport Exerc. 2016;48: 499–508. doi: 10.1249/MSS.0000000000000795 26460634

12. Brockett CL, Morgan DL, Proske U. Human hamstring muscles adapt to eccentric exercise by changing optimum length. Med Sci Sports Exerc. 2001;33: 783–90. Available: http://www.ncbi.nlm.nih.gov/pubmed/11323549 doi: 10.1097/00005768-200105000-00017 11323549

13. Clark R, Bryant A, Culgan J-P, Hartley B. The effects of eccentric hamstring strength training on dynamic jumping performance and isokinetic strength parameters: a pilot study on the implications for the prevention of hamstring injuries. Phys Ther Sport. Churchill Livingstone; 2005;6: 67–73. doi: 10.1016/J.PTSP.2005.02.003

14. Brughelli M, Cronin J. Altering the length-tension relationship with eccentric exercise: implications for performance and injury. Sports Med. 2007;37: 807–26. Available: http://www.ncbi.nlm.nih.gov/pubmed/17722950 doi: 10.2165/00007256-200737090-00004 17722950

15. Ditroilo M, De Vito G, Delahunt E. Kinematic and electromyographic analysis of the Nordic Hamstring Exercise. J Electromyogr Kinesiol. 2013;23: 1111–8. doi: 10.1016/j.jelekin.2013.05.008 23809430

16. van den Tillaar R, Solheim JAB, Bencke J. Comparison Of Hamstring Muscle Activation During High-Speed Running And Various Hamstring Strengthening Exercises. Int J Sports Phys Ther. 2017;12: 718–727. Available: http://www.ncbi.nlm.nih.gov/pubmed/29181249 29181249

17. Brooks JHM, Fuller CW, Kemp SPT, Reddin DB. Incidence, Risk, and Prevention of Hamstring Muscle Injuries in Professional Rugby Union. Am J Sports Med. 2006;34: 1297–1306. doi: 10.1177/0363546505286022 16493170

18. Thelen DG, Chumanov ES, Hoerth DM, Best TM, Swanson SC, Li L, et al. Hamstring muscle kinematics during treadmill sprinting. Med Sci Sports Exerc. 2005;37: 108–14. Available: http://www.ncbi.nlm.nih.gov/pubmed/15632676 doi: 10.1249/01.mss.0000150078.79120.c8 15632676

19. Giacomoo J-P, Lahti J, Andras H, Gerus P, Morin J-B. A new testing and training device for hamstring muscle function. In: Sport Performance & Science Reports [Internet]. 2018 [cited 3 Jan 2018]. Available: https://sportperfsci.com/a-new-testing-and-training-device-for-hamstring-muscle-function/

20. Mohamed O, Perry J, Hislop H. Relationship between wire EMG activity, muscle length, and torque of the hamstrings. Clin Biomech (Bristol, Avon). 2002;17: 569–79. Available: http://www.ncbi.nlm.nih.gov/pubmed/12243716

21. Onishi H, Yagi R, Oyama M, Akasaka K, Ihashi K, Handa Y. EMG-angle relationship of the hamstring muscles during maximum knee flexion. J Electromyogr Kinesiol. 2002;12: 399–406. Available: http://www.ncbi.nlm.nih.gov/pubmed/12223173 12223173

22. Higashihara A, Ono T, Kubota J, Fukubayashi T. Differences in the electromyographic activity of the hamstring muscles during maximal eccentric knee flexion. Eur J Appl Physiol. 2010;108: 355–362. doi: 10.1007/s00421-009-1242-z 19816706

23. Bartlett R. Introduction to sports biomechanics: Analysing human movement patterns. Abingdon: Routledge; 2007.

24. Winter DA. Biomechanics and motor control of human movement [Internet]. Wiley; 2009. Available: https://www.wiley.com/en-us/Biomechanics+and+Motor+Control+of+Human+Movement%2C+4th+Edition-p-9780470398180

25. Hamill J, Knutzen K. Biomechanical basis of human movement. Philadelphia: Lippincott Williams & Wilkins; 2006.

26. de Leva P. Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J Biomech. 1996;29: 1223–30. Available: http://www.ncbi.nlm.nih.gov/pubmed/8872282 doi: 10.1016/0021-9290(95)00178-6 8872282

27. Featherstone R. Rigid body dynamics algorithms. Berlin: Springer; 2014.

28. Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000;10: 361–74. Available: http://www.ncbi.nlm.nih.gov/pubmed/11018445 11018445

29. Zebis MK, Skotte J, Andersen CH, Mortensen P, Petersen HH, Viskaer TC, et al. Kettlebell swing targets semitendinosus and supine leg curl targets biceps femoris: an EMG study with rehabilitation implications. Br J Sports Med. 2013;47: 1192–8. doi: 10.1136/bjsports-2011-090281 22736206

30. Cohen J. Statistical power analysis for the behavioral sciences. Academic Press; 1977.

31. Guex K, Gojanovic B, Millet GP. Influence of hip-flexion angle on hamstrings isokinetic activity in sprinters. J Athl Train. 2012;47: 390–5. doi: 10.4085/1062-6050-47.4.04 22889654

32. Askling CM, Tengvar M, Thorstensson A. Acute hamstring injuries in Swedish elite football: a prospective randomised controlled clinical trial comparing two rehabilitation protocols. Br J Sports Med. 2013;47: 953–959. doi: 10.1136/bjsports-2013-092165 23536466

33. Lunnen JD, Yack J, LeVeau BF. Relationship between muscle length, muscle activity, and torque of the hamstring muscles. Phys Ther. 1981;61: 190–5. Available: http://www.ncbi.nlm.nih.gov/pubmed/7465621 doi: 10.1093/ptj/61.2.190 7465621

34. Kellis E, Galanis N, Kofotolis N, Hatzi A. Effects of hip flexion angle on surface electromyographic activity of the biceps femoris and semitendinosus during isokinetic knee flexion. Muscles Ligaments Tendons J. 2017;7: 286–292. doi: 10.11138/mltj/2017.7.2.286 29264340

35. Narouei S, Imai A, Akuzawa H, Hasebe K, Kaneoka K. Hip and trunk muscles activity during nordic hamstring exercise. J Exerc Rehabil. 2018;14: 231–238. doi: 10.12965//jer.1835200.600 29740557

36. Bourne MN, Williams MD, Opar DA, Al Najjar A, Kerr GK, Shield AJ. Impact of exercise selection on hamstring muscle activation. Br J Sports Med. 2017;51: 1021–1028. doi: 10.1136/bjsports-2015-095739 27467123

37. Messer DJ, Bourne MN, Williams MD, Al Najjar A, Shield AJ. Hamstring Muscle Use in Women During Hip Extension and the Nordic Hamstring Exercise: A Functional Magnetic Resonance Imaging Study. J Orthop Sports Phys Ther. 2018;48: 607–612. doi: 10.2519/jospt.2018.7748 29685059

38. Ono T, Higashihara A, Fukubayashi T. Hamstring functions during hip-extension exercise assessed with electromyography and magnetic resonance imaging. Res Sports Med. 2011;19: 42–52. doi: 10.1080/15438627.2011.535769 21253975

39. Bourne MN, Timmins RG, Opar DA, Pizzari T, Ruddy JD, Sims C, et al. An Evidence-Based Framework for Strengthening Exercises to Prevent Hamstring Injury. Sports Med. 2018;48: 251–267. doi: 10.1007/s40279-017-0796-x 29116573

40. Jónasson G, Helgason A, Ingvarsson Þ, Kristjánsson AM, Briem K. The Effect of Tibial Rotation on the Contribution of Medial and Lateral Hamstrings During Isometric Knee Flexion. Sport Heal A Multidiscip Approach. 2016;8: 161–166. doi: 10.1177/1941738115625039 26721286


Článek vyšel v časopise

PLOS One


2019 Číslo 10