Robust automated reading of the skin prick test via 3D imaging and parametric surface fitting


Autoři: Jesus Pineda aff001;  Raul Vargas aff001;  Lenny A. Romero aff002;  Javier Marrugo aff003;  Jaime Meneses aff004;  Andres G. Marrugo aff001
Působiště autorů: Facultad de Ingeniería, Universidad Tecnologica de Bolivar, Cartagena, Colombia aff001;  Facultad de Ciencias Básicas, Universidad Tecnologica de Bolivar, Cartagena, Colombia aff002;  Instituto de Investigaciones Inmunológicas, Universidad De Cartagena, Cartagena, Colombia aff003;  Grupo de Óptica y Tratamiento de Señales, Universidad Industrial de Santander, Bucaramanga, Colombia aff004
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223623

Souhrn

The conventional reading of the skin prick test (SPT) for diagnosing allergies is prone to inter- and intra-observer variations. Drawing the contours of the skin wheals from the SPT and scanning them for computer processing is cumbersome. However, 3D scanning technology promises the best results in terms of accuracy, fast acquisition, and processing. In this work, we present a wide-field 3D imaging system for the 3D reconstruction of the SPT, and we propose an automated method for the measurement of the skin wheals. The automated measurement is based on pyramidal decomposition and parametric 3D surface fitting for estimating the sizes of the wheals directly. We proposed two parametric models for the diameter estimation. Model 1 is based on an inverted Elliptical Paraboloid function, and model 2 on a super-Gaussian function. The accuracy of the 3D imaging system was evaluated with validation objects obtaining transversal and depth accuracies within ± 0.1 mm and ± 0.01 mm, respectively. We tested the method on 80 SPTs conducted in volunteer subjects, which resulted in 61 detected wheals. We analyzed the accuracy of the models against manual reference measurements from a physician and obtained that the parametric model 2 on average yields diameters closer to the reference measurements (model 1: -0.398 mm vs. model 2: -0.339 mm) with narrower 95% limits of agreement (model 1: [-1.58, 0.78] mm vs. model 2: [-1.39, 0.71] mm) in a Bland-Altman analysis. In one subject, we tested the reproducibility of the method by registering the forearm under five different poses obtaining a maximum coefficient of variation of 5.24% in the estimated wheal diameters. The proposed method delivers accurate and reproducible measurements of the SPT.

Klíčová slova:

Allergens – Cameras – Data processing – Ellipses – Forearms – Imaging techniques – Physicians – Skin tests


Zdroje

1. Buyuktiryaki B, Sahiner UM, Karabulut E, Cavkaytar O, Tuncer A, Sekerel BE. Optimizing the use of a skin prick test device on children. International Archives of Allergy and Immunology. 2013;162(1):65–70. doi: 10.1159/000350788 23816800

2. Venter C, Arshad SH. Epidemiology of Food Allergy. Pediatric Clinics of North America. 2011;58(2):327–349. doi: 10.1016/j.pcl.2011.02.011 21453805

3. Marrugo J, Hernández L, Villalba V. Prevalence of self-reported food allergy in Cartagena (Colombia) population. Allergologia et immunopathologia. 2008;36(6):320–324. doi: 10.1016/S0301-0546(08)75863-4 19150030

4. Tang MLK, Mullins RJ. Food allergy: is prevalence increasing? Internal medicine journal. 2017;47(3):256–261. doi: 10.1111/imj.13362 28260260

5. Andersen HH, Lundgaard AC, Petersen AS, Hauberg LE, Sharma N, Hansen SD, et al. The Lancet Weight Determines Wheal Diameter in Response to Skin Prick Testing with Histamine. PLoS ONE. 2016;11(5):e0156211–15. doi: 10.1371/journal.pone.0156211 27213613

6. Pijnenborg H, Nilsson L, Dreborg S. Estimation of skin prick test reactions with a scanning program. Allergy. 1996;51(11):782–788 8947335

7. Valk JPM, van Wijk RG, Hoorn E, Groenendijk L, Groenendijk IM, Jong NW. Measurement and interpretation of skin prick test results. Clinical and Translational Allergy. 2016; p. 1–5.

8. Wöhrl S, Vigl K, Binder M, Stingl G, Prinz M. Automated measurement of skin prick tests: an advance towards exact calculation of wheal size. Experimental Dermatology. 2006;15(2):119–124. doi: 10.1111/j.1600-0625.2006.00388.x 16433683

9. Konstantinou GN, Bousquet PJ, Zuberbier T, Papadopoulos NG. The Longest Wheal Diameter Is the Optimal Measurement for the Evaluation of Skin Prick Tests. International Archives of Allergy and Immunology. 2010;151(4):343–345. doi: 10.1159/000250443 19851076

10. Prinz M, Vigl K, Wöhrl S. Automatic measurement of skin wheals provoked by skin prick tests. Studies in health technology and informatics. 2005;116:441–446. 16160297

11. Heinzerling L, Mari A, Bergmann KC, Bresciani M, Burbach G, Darsow U, et al. The skin prick test—European standards. Clinical and Translational Allergy. 2013;3(1):3. doi: 10.1186/2045-7022-3-3 23369181

12. McCann WA, Ownby DR. The reproducibility of the allergy skin test scoring and interpretation by board-certified/ board-eligible allergists. Annals of Allergy, Asthma and Immunology. 2002;89(4):368–371. doi: 10.1016/S1081-1206(10)62037-6 12392380

13. Bulan O. Improved wheal detection from skin prick test images. In: Niel KS, Bingham PR, editors. IS&T/SPIE Electronic Imaging. SPIE; 2014. p. 90240J.

14. Huttunen H, Ryynänen JP, Forsvik H, Voipio V, Kikuchi H. Kernel Fisher discriminant and elliptic shape model for automatic measurement of allergic reactions. In: Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011. p. 764–773.

15. Justo X, Díaz I, Gil JJ, Gastaminza G. Prick test: evolution towards automated reading. Allergy. 2016;71(8):1095–1102. doi: 10.1111/all.12921 27100940

16. Haleem A, Javaid M. 3D scanning applications in medical field: A literature-based review. Clinical Epidemiology and Global Health. 2019;7(2):199–210. doi: 10.1016/j.cegh.2018.05.006

17. Laloš J, Mrak M, Pavlovčič U, Jezeršek M. Handheld Optical System for Skin Topography Measurement Using Fourier Transform Profilometry. Strojniški vestnik—Journal of Mechanical Engineering. 2015;61(5):285–291.

18. Rey-Barroso L, Burgos-Fernández FJ, Ares M, Royo S, Puig S, Malvehy J, et al. Morphological study of skin cancer lesions through a 3D scanner based on fringe projection and machine learning. Biomedical Optics Express. 2019;10(7):3404. doi: 10.1364/BOE.10.003404 31467785

19. Justo X, Díaz I, Gil JJ, Gastaminza G. Medical Device for Automated Prick Test Reading. IEEE Journal of Biomedical and Health Informatics. 2018;22(3):895–903. doi: 10.1109/JBHI.2017.2680840 28362597

20. dos Santos RV, Mlynek A, Lima HC, Martus P, Maurer M. Beyond flat weals: validation of a three-dimensional imaging technology that will improve skin allergy research. Clinical and Experimental Dermatology. 2008;33(6):772–775. doi: 10.1111/j.1365-2230.2008.02897.x 18681868

21. Verdaasdonk RM, Ploeger J, den Blanken M, Liberton N, Rustemeyer T, Wolff J. The use of 3D scanners for skin prick allergy testing: a feasibility study (Conference Presentation). In: Photonics in Dermatology and Plastic Surgery 2018. vol. 10467. International Society for Optics and Photonics; 2018. p. 104670B.

22. Roques C, Téot L, Frasson N, Meaume S. PRIMOS: an optical system that produces three-dimensional measurements of skin surfaces. Journal of wound care. 2003;12(9):362–364. doi: 10.12968/jowc.2003.12.9.26539 14601231

23. Rosén BG, Blunt L, Thomas TR. On in-vivoskin topography metrology and replication techniques. Journal of Physics: Conference Series. 2005;13:325–329.

24. Marrugo AG, Romero LA, Meneses J. Wide-field 3D imaging with an LED pattern projector for accurate skin feature measurements via Fourier transform profilometry. In: Dimensional Optical Metrology and Inspection for Practical Applications VIII. SPIE; 2019. p. 1099102.

25. Lang P, Radermacher K, Steines D, inventors; Kinematic and Parameterized Modeling for Patient-Adapted Implants, Tools, and Surgical Procedures. US Patent App. 14/775,190; 2016.

26. Marrugo AG, Romero LA, Meneses JE, Marrugo J, inventors; Universidad Industrial de Santander Universidad Tecnologica de Bolivar, assignee. Dispositivo y método de reconstrucción 3D para la medición de pápulas en la piel. Colombian invention patent App. NC2018/0007546; 2018.

27. Takeda M, Ina H, Kobayashi S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. Journal of the Optical Society of America. 1982;72(1):156–160. doi: 10.1364/JOSA.72.000156

28. Li B, An Y, Zhang S. Single-shot absolute 3D shape measurement with Fourier transform profilometry. Applied Optics. 2016;55(19):5219. doi: 10.1364/AO.55.005219 27409213

29. Vargas R, Marrugo AG, Pineda J, Meneses J, Romero LA. Camera-Projector Calibration Methods with Compensation of Geometric Distortions in Fringe Projection Profilometry: A Comparative Study. Opt Pura Apl. 2018;51(3):50305:1–10. doi: 10.7149/OPA.51.3.50305

30. Jolliffe IT, Cadima J. Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2016;374(2065):20150202. doi: 10.1098/rsta.2015.0202

31. Burt P, Adelson E. The Laplacian pyramid as a compact image code. IEEE Transactions on communications. 1983;31(4):532–540. doi: 10.1109/TCOM.1983.1095851

32. Paris S, Hasinoff SW, Kautz J. Local Laplacian filters: Edge-aware image processing with a Laplacian pyramid. ACM Trans Graph. 2011;30(4):68–1. doi: 10.1145/2010324.1964963

33. Shao L, Zhen X, Tao D, Li X. Spatio-temporal Laplacian pyramid coding for action recognition. IEEE Transactions on Cybernetics. 2014;44(6):817–827. doi: 10.1109/TCYB.2013.2273174 23912503

34. Forsyth DA, Ponce J. Computer vision: a modern approach. Prentice-Hall; 2012.

35. Redmon J, Farhadi A. YOLO9000: better, faster, stronger. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 7263–7271.

36. Li Y. Light beams with flat-topped profiles. Optics Letters. 2002;27(12):1007–1009. doi: 10.1364/ol.27.001007 18026347

37. Quellec G, Lamard M, Josselin PM, Cazuguel G, Cochener B, Roux C. Optimal wavelet transform for the detection of microaneurysms in retina photographs. IEEE transactions on medical imaging. 2008;27(9):1230–1241. doi: 10.1109/TMI.2008.920619 18779064

38. Beirle S, Lampel J, Lerot C, Sihler H, Wagner T. Parameterizing the instrumental spectral response function and its changes by a super-Gaussian and its derivatives. Atmospheric Measurement Techniques. 2017;10(2):581–598. doi: 10.5194/amt-10-581-2017

39. Coleman TF, Li Y. An interior trust region approach for nonlinear minimization subject to bounds. SIAM Journal on optimization. 1996;6(2):418–445. doi: 10.1137/0806023

40. Giavarina D. Understanding Bland Altman analysis. Biochemia medica. 2015;25(2):141–151. doi: 10.11613/BM.2015.015 26110027

41. Altman DG, Bland JM. Measurement in Medicine: The Analysis of Method Comparison Studies. Journal of the Royal Statistical Society: Series D (The Statistician). 1983;32(3):307–317.

42. Krouwer JS. Setting performance goals and evaluating total analytical error for diagnostic assays. Clinical chemistry. 2002;48(6 Pt 1):919–927. 12029009

43. Bernstein IL, Li JT, Bernstein DI, Hamilton R, Spector SL, Tan R, et al. Allergy diagnostic testing: an updated practice parameter. Annals of allergy, asthma & immunology. 2008;100(3):S1–S148.


Článek vyšel v časopise

PLOS One


2019 Číslo 10