Recovery when you are on your own: Slow population responses in an isolated marine reserve


Autoři: Jack C. Olson aff001;  Richard S. Appeldoorn aff001;  Michelle T. Schärer-Umpierre aff002;  Juan J. Cruz-Motta aff001
Působiště autorů: Department of Marine Sciences, University of Puerto Rico, Mayagüez, Puerto Rico, United States of America aff001;  H.J.R. Reefscaping, Cabo Rojo, Puerto Rico, United States of America aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223102

Souhrn

Geographic isolation is an important yet underappreciated factor affecting marine reserve performance. Isolation, in combination with other factors, may preclude recruit subsidies, thus slowing recovery when base populations are small and causing a mismatch between performance and stakeholder expectations. Mona Island is a small, oceanic island located within a partial biogeographic barrier—44 km from the Puerto Rico shelf. We investigated if Mona Island’s no-take zone (MNTZ), the largest in the U.S. Caribbean, was successful in increasing mean size and density of a suite of snapper and grouper species 14 years after designation. The La Parguera Natural Reserve (LPNR) was chosen for evaluation of temporal trends at a fished location. Despite indications of fishing within the no-take area, a reserve effect at Mona Island was evidenced from increasing mean sizes and densities of some taxa and mean total density 36% greater relative to 2005. However, the largest predatory species remained rare at Mona, preventing meaningful analysis of population trends. In the LPNR, most commercial species (e.g., Lutjanus synagris, Lutjanus apodus, Lutjanus mahogoni) did not change significantly in biomass or abundance, but some (Ocyurus chrysurus, Lachnolaimus maximus), increased in abundance owing to strong recent recruitment. This study documents slow recovery in the MNTZ that is limited to smaller sized species, highlighting both the need for better compliance and the substantial recovery time required by commercially valuable, coral reef fishes in isolated marine reserves.

Klíčová slova:

Biomass – Coral reefs – Habitats – Islands – Marine biology – Marine fish – Reefs – Spawning


Zdroje

1. Lotze HK, Lenihan HS, Bourque BJ, Bradbury RH, Cooke RG, Kay MC, et al. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science. 2006 Jun 23;312(5781): 1806–1809. doi: 10.1126/science.1128035 16794081

2. Jackson JB, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, et al. Historical overfishing and the recent collapse of coastal ecosystems. Science. 2001 Jul 27;293(5530): 629–637. doi: 10.1126/science.1059199 11474098

3. Dulvy NK, Sadovy Y, Reynolds JD. Extinction vulnerability in marine populations. Fish Fish. 2003 Mar;4(1): 25–64.

4. Hughes T, Szmant AM, Steneck R, Carpenter R, Miller S. Algal blooms on coral reefs: What are the causes? Limonology Oceanogr. 1999;44: 1583–1586.

5. Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, et al. Global trajectories of the long-term decline of coral reef ecosystems. Science. 2003 Aug 15;301(5635): 955–958. doi: 10.1126/science.1085706 12920296

6. Ault JS, Smith SG, Luo J, Monaco ME, Appeldoorn RS. Length-based assessment of sustainability benchmarks for coral reef fishes in Puerto Rico. Environ Conserv. 2008 Sep;35(3): 221–231.

7. Appeldoorn R, Sanders I, Farber L. A 61-year reconstruction of fisheries catch in Puerto Rico. Fish. Centre. Work. Pap. Ser. 2006;86: 6–9.

8. Sadov Y. The case of the disappearing grouper: Epinephelus striatus, the Nassau grouper, in the Caribbean and western Atlantic. Proc Gulf Caribb Fish Inst. 1995;45: 5–22.

9. Bohnsack JA. Application of marine reserves to reef fisheries management. Aust J Ecol. 1998 Jun;23(3): 298–304.

10. Russ GR, Alcala AC. Marine reserves: long-term protection is required for full recovery of predatory fish populations. Oecologia. 2004 Mar 1;138(4):622–7. doi: 10.1007/s00442-003-1456-4 14716555

11. McClanahan TR, Graham NA, Calnan JM, MacNeil MA. Toward pristine biomass: reef fish recovery in coral reef marine protected areas in Kenya. Ecol Appl. 2007 Jun;17(4): 1055–67. doi: 10.1890/06-1450 17555218

12. Schärer-Umpierre MT, Mateos-Molina D, Appeldoorn R, Bejarano I, Hernández-Delgado EA, Nemeth RS, et al. Marine managed areas and associated fisheries in the US Caribbean. Adv Mar Biol. 2014;69: 129–152. 25358299

13. Hilborn R, Stokes K, Maguire JJ, Smith T, Botsford LW, Mangel M, et al. When can marine reserves improve fisheries management? Ocean Coast Manage. 2004 Jan 1;47(3–4): 197–205.

14. García-Charton J, Perez-Ruzafa A, Milazzo M, Maggi E, Pisa U. Effectiveness of European Atlanto- Mediterranean MPAs: Do they accomplish the expected effects on populations … J Nat Conserv. 2008;16: 193–221.

15. Halpern B, Warner RR. Marine reserves have rapid and long lasting effects. Ecol Lett. 2002;5: 361–366.

16. Lester SE, Halpern BS, Grorud-Colvert K, Lubchenco J, Ruttenberg BI, Gaines SD, et al. Biological effects within no-take marine reserves: a global synthesis. Mar Ecol Prog Ser 2009;384: 33–46. doi: 10.3354/meps08029

17. Russ GR, Alcala AC. Do marine reserves export adult fish biomass? Evidence from Apo Island, central Philippines. Mar Ecol Prog Ser. 1996;132: 1–9. doi: 10.3354/meps132001

18. Aburto-Oropeza O, Erisman B, Galland GR, Mascareñas-Osorio I, Sala E, Ezcurra E. Large recovery of fish biomass in a no-take marine reserve. PLoS One. 2011;6. doi: 10.1371/journal.pone.0023601 21858183

19. Bohnsack JA. How marine fishery reserves can improve reef fisheries. Proc Gulf Caribb Fish Inst. 1994;43: 217–241.

20. Hackradt CW, García-Charton J, Harmelin-Vivien M, Perez-Ruzafa A, Le Direach L, Bayle-Sempere J, et al. Response of rocky reef top predators (Serranidae: Epinephelinae) in and around marine protected areas in the Western Mediterranean Sea. PLoS One. 2014;9. doi: 10.1371/journal.pone.0098206 24905331

21. Dell C, Montoya JP, Hay ME. Effect of marine protected areas (MPAs) on consumer diet: MPA fish feed higher in the food chain. Mar Ecol Prog Ser. 2015;540: 227–234. doi: 10.3354/meps11487 27340314

22. Selig ER, Bruno JF. A global analysis of the effectiveness of marine protected areas in preventing coral loss. PLoS One. 2010;5: 1–7. doi: 10.1371/journal.pone.0009278 20174644

23. Dahlgren CP, Sobel J. Designing a Dry Tortugas ecological reserve: How big is big enough? …To do what? Bull Mar Sci. 2000;66: 707–719.

24. Halpern BS. The impact of marine reserves: Do reserves work and does reserve size matter? Ecol Appl. 2003;13: S117–S137.

25. Claudet J, Osenberg CW, Benedetti-Cecchi L, Domenici P, García-Charton JA, Perez-Ruzafa A, et al. Marine reserves: Size and age do matter. Ecol Lett. 2008;11: 481–489. doi: 10.1111/j.1461-0248.2008.01166.x 18294212

26. Russ GR, Alcala AC. Marine reserves: Rates and patterns of recovery and decline of predatory fish, 1983–2000. Ecol Appl. 2003;13: 1553–1565. doi: 10.1890/01-5341

27. Gaines SD, White C, Carr MH, Palumbi SR. Designing marine reserve networks for both conservation and fisheries management. Proc Natl Acad Sci USA. 2010;107: 18286–18293. doi: 10.1073/pnas.0906473107 20200311

28. Edgar GJ, Stuart-Smith RD, Willis TJ, Kininmonth S, Baker SC, Banks S, et al. Global conservation outcomes depend on marine protected areas with five key features. Nature. 2014;506: 216–20. doi: 10.1038/nature13022 24499817

29. Cinner JE, Maire E, Huchery C, MacNeil MA, Graham NAJ, Mora C, et al. Gravity of human impacts mediates coral reef conservation gains. Proc Natl Acad Sci USA. 2018;115: E6116–E6125. doi: 10.1073/pnas.1708001115 29915066

30. Endo CA, Gherardi DF, Pezzi LP, Lima LN. Low connectivity compromises the conservation of reef fishes by marine protected areas in the tropical South Atlantic. Sci. Rep. 2019;9: 1–10.

31. Sandin SA, Vermeij MJA, Hurlbert AH. Island biogeography of Caribbean coral reef fish. Glob Ecol Biogeogr. 2008;17: 770–777. doi: 10.1111/j.1466-8238.2008.00418.x

32. Sale PF, Cowen RK, Danilowicz BS, Jones GP, Kritzer JP, Lindeman KC, et al. Critical science gaps impede use of no-take fishery reserves. Trends Ecol Evol. 2005;20: 74–80. doi: 10.1016/j.tree.2004.11.007 16701346

33. Swearer SE, Caselle JE, Lea DW, Warner RR. Larval retention and recruitment in an island population of a coral-reef fish. Nature. 1999;402: 799–802. doi: 10.1038/45533

34. Cowen RK, Lwiza KM, Sponaugle S, Paris CB, Olson DB. Connectivity of marine populations: open or closed?. Science. 2000;287:857–9. doi: 10.1126/science.287.5454.857 10657300

35. Paris CB, Cowen RK. Direct evidence of a biophysical retention mechanism for coral reef fish larvae. Limnology and Oceanography. 2004 Nov;49(6): 1964–79.

36. Jennings S. Patterns and prediction of population recovery in marine reserves. Rev Fish Biol Fish. 2001;10: 209–231.

37. Matos R, Martínez A, Alvarez EC. Plan de manejo Reserva Natural Islas de Mona y Monito. 2011. Departamento de Recursos Naturales y Ambientales, San Juan, Puerto Rico

38. Johns WE, Townsend TL, Fratantoni DM, Wilson WD. On the Atlantic inflow to the Caribbean Sea. Deep-Sea Res (1 Oceanogr Res Pap). 2002;49: 211–243.

39. Taylor M, Hellberg M. Comparative phylogeography in a genus of coral reef fishes: biogeographic and genetic concordance in the Caribbean. Mol Ecol. 2006;15: 695–707. doi: 10.1111/j.1365-294X.2006.02820.x 16499695

40. Lessios HA, Robertson DR, Cubit JD. Spread of Diadema mass mortality through the Caribbean. Science. 1984;226: 335–337. doi: 10.1126/science.226.4672.335 17749884

41. Dennis GD, Smith-Vaniz WF, Colin PL, Hensley DA, McGehee MA. Shore fishes from islands of the Mona Passage, Greater Antilles with comments on their zoogeography. Caribb J Sci. 2005;41: 716–743.

42. Baums IB, Paris CB, Chérubin LM. A bio-oceanographic filter to larval dispersal in a reef-building coral. Limnol Oceanogr. 2006;51: 1969–1981. doi: 10.4319/lo.2006.51.5.1969

43. Beltrán DM, Schizas N V, Appeldoorn RS, Prada C. Effective dispersal of Caribbean reef fish is smaller than current spacing among marine protected areas. Sci Rep. 2017;7: 1–10.

44. Cowen RK, Paris CB, Srinivasan A. Scaling of connectivity in marine populations. Science. 2006;311: 522–527. doi: 10.1126/science.1122039 16357224

45. Rojas Ortega J, Sais JRG. Caracterización del Ictioplancton a traves del Canal de la Mona con énfasis en familias arrecifales. Proc Gulf Carib Fish Inst. 2004;55: 349–361.

46. Mateos-Molina D, Schärer-Umpierre MT, Appeldoorn RS, García-Charton JA. Measuring the effectiveness of a Caribbean oceanic island no-take zone with an asymmetrical BACI approach. Fish Res. 2014;150: 1–10. doi: 10.1016/j.fishres.2013.09.017

47. Schärer-Umpierre MT. Using landscape ecology to describe habitat connectivity for coral reef fishes. PhD Dissertation. University of Puerto Rico, Mayaguez. 2009.

48. Pittman SJ, Hile SD, Jeffrey CFG, Clark R, Woody K, Herlach BD, et al. Coral reef ecosystems of Reserva Natural de La Parguera (Puerto Rico): Spatial and temporal patterns in fish and benthic communities (2001–2007). NOAA Tech Mem NOS NCCOS 107. 2010; 202 pp.

49. Valdés-Pizzini M. Apuntes sobre el desarrollo histórico de la pesca en Puerto Rico. Mayagüez, Puerto Rico: UPR Sea Grant College Program Publications. 1987.

50. Schärer MT, Nemeth MI, Appeldoorn RS. Protecting a multi-species spawning aggregation at Mona Island, Puerto Rico. Proc Gulf Caribb Fish Inst. 2010;62: 252–259.

51. Morelock J, Schneidermann N, Bryant WR. Shelf reefs, southwestern Puerto Rico. Stud Geol. 1977;4: 17–25.

52. Aguilar-Perera A, Schärer-Umpierre M, Valdés-Pizzini M. Marine protected areas in Puerto Rico: Historical and current perspectives. Ocean Coast Manag. 2006;49: 961–975. doi: 10.1016/j.ocecoaman.2006.08.011

53. Valdés-Pizzini M, Schärer-Umpierre M. People, Habitats, Species, and Governance: An Assessment of the Social-Ecological System of La Parguera, Puerto Rico [Internet]. Interdisciplinary Center for Coastal Studies. 2014. http://www.seagrantpr.org/catalog/files/books/La_Parguera.pdf

54. Matos-Caraballo D, Agar JJ. Comprehensive census of the marine commercial fishery of Puerto Rico, 2008. Proc Gulf Caribb Fish Inst. 2010;62: 100–112.

55. García-Sais J, Appeldoorn R, Battista T, Bauer L, Bruckner A, Caldow C, et al. Puerto Rico The State of Coral Reef Ecosystems of Puerto Rico Puerto Rico. In: Waddell J, Clarke A (eds) The state of coral reef ecosystems of the United States and Pacific Freely Associated States: 2008 NOAA Technical Memorandum NOS NCCOS 78. Silver Spring, MD; 2008. pp. 75–116.

56. Appeldoorn R, Aguilar-Perera A, Bouwmeester BLK, Dennis GD, Hill RL, Merten W, et al. Movement of fishes (Grunts: Haemulidae) across the coral reef seascape: A review of scales, patterns and processes. Caribb J Sci. 2009;45: 304–316.

57. Hitt S, Pittman SJ, Brown KA. Tracking and mapping sun-synchronous migrations and diel space use patterns of Haemulon sciurus and Lutjanus apodus in the U. S. Virgin Islands. Environ Biol Fishes. 2011;92: 525–538. doi: 10.1007/s10641-011-9875-2

58. Kramer D, Chapman M. Implications of fish home range size and relocation for marine reserve function. Environ Biol Fishes. 1999;55: 65–79.

59. Nemeth M, Appeldoorn R. The distribution of herbivorous coral reef fishes within fore-reef habitats: The role of depth, light and rugosity. Caribb J Sci. 2009;45: 247–253.

60. Hurlbert SH. Pseudoreplication and the design of ecological field experiments. Ecol Monogr. 1984;54: 187–211

61. Froese, R and Pauly D. Editors. 2018. FishBase. World Wide Web electronic publication. www.fishbase.org (accessed 10 May 2018)

62. Anderson M, Gorley RN, Clarke KR. PERMANOVA + for PRIMER user manual. Plymouth, United Kingdom; 2008.

63. Clarke KR, Somerfield PJ, Chapman MG. On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray-Curtis coefficient for denuded assemblages. J Exp Mar Bio Ecol. 2006;330: 55–80. doi: 10.1016/j.jembe.2005.12.017

64. Kritzer JP, Davies CR, Mapstone BD. Characterizing fish populations: effects of sample size and population structure on the precision of demographic parameter estimates. Can J Fish Aquat Sci. 2001;58: 1557–1568. doi: 10.1139/cjfas-58-8-1557

65. Underwood AJ. Experiments in Ecology; Their Logical Design and Interpretation Using Analysis of Variance. Cambridge: Cambridge University Press; 1997.

66. Graham NAJ, Evans RD, Russ GR. The effects of marine reserve protection on the trophic relationships of reef fishes on the Great Barrier Reef. Environ Conserv. 2003;30: 200–208. doi: 10.1017/S0376892903000195

67. Bruckner AW, Hill RL. Ten years of change to coral communities off Mona and Desecheo Islands, Puerto Rico, from disease and bleaching. Dis Aquat Org. 2009 Nov 16;87(1–2): 19–31. doi: 10.3354/dao02120 20095238

68. Doherty PTF. An empirical test of recruitment limitation in a coral reef fish. Science. 1994;263: 935–939. doi: 10.1126/science.263.5149.935 17758633

69. Sponaugle S, Grorud-colvert K, Pinkard D. Temperature-mediated variation in early life history traits and recruitment success of the coral reef fish Thalassoma bifasciatum in the Florida Keys. Mar Ecol Prog Ser. 2006;308: 1–15.

70. Bergenius MAJ, Meekan MG, Robertson DR, Mccormick MI. Larval growth predicts the recruitment success of a coral reef fish. Oecologia. 2002;131: 521–525. doi: 10.1007/s00442-002-0918-4 28547546

71. Cowen RK, Paris CB, Olson DB, Fortuna JL. The role of long distance dispersal versus local retention in repleneshing marine populations. Gulf Caribb Res. 2003;14: 129–137.

72. Sale PF. Connectivity, recruitment variation, and the structure of reef fish communities. Integr Comp Biol. 2004;44: 390–399. doi: 10.1093/icb/44.5.390 21676724

73. Matos-Caraballo D. Overview of Puerto Rico’s small-scale fisheries statistics 2001–2004. Gulf Caribb Fish Inst. 2007: 93–104.

74. Matos-Caraballo D, Cartagena-Haddock M, Peña-Alvarado N. Portrait of the Fishery of Red Hind, Epinephelus guttatus, in Puerto Rico during 1988–2001. Proc Gulf Caribb Fish Instit. 2006: 343–356.

75. Nemeth RS. Population characteristics of a recovering US Virgin Islands red hind spawning aggregation following protection. Mar Ecol Prog Ser. 2005;286: 81–97. doi: 10.3354/meps286081 16612415

76. Hixon MA, Johnson DW, Sogard SM. BOFFFFs: on the importance of conserving old-growth age structure in fishery populations. ICES J Mar Sci. 2014;71: 2171–2185. doi: 10.1093/icesjms/fst200

77. Miller MW, Gerstner C. Reefs of an uninhabited Caribbean island: fishes, benthic habitat, and opportunities to discern reef fishery impact. Biol Conserv. 2002;106: 37–44.

78. Mumby PJ, Steneck RS, Edwards AJ, Ferrari R, Coleman R, Harborne AR, et al. Fishing down a Caribbean food web relaxes trophic cascades. Mar Ecol Prog Ser. 2012;445: 13–24. doi: 10.3354/meps09450

79. Ault JS, Smith SG, Bohnsack JA, Luo J, Harper DE, Mcclellan DB. Building sustainable fisheries in Florida’s coral reef ecosystem: Positive signs in the Dry Tortugas. Bull Mar Sci. 2006;78: 633–654.

80. Chiappone M, Sluka R, Sealey KS. Groupers (Pisces: Serranidae) in fished and protected areas of the Florida Keys, Bahamas and northern Caribbean. Mar Ecol Prog Ser. 2000;198: 261–272. doi: 10.3354/meps198261

81. Kimmel, J.J. A characterization of Puerto Rican fish assemblages. Ph.D. Thesis. University of Puerto Rico. 1985.

82. Weil E, Croquer A, Urreiztieta I. Temporal variability and impact of coral diseases and bleaching in La Parguera, Puerto Rico from 2003–2007. Caribb J Sci. 2009 Jan;45(2–3):221–47.

83. Chapman MR, Kramer DL. Gradients in coral reef fish density and size across the Barbados Marine Reserve boundary: effects of reserve protection and habitat characteristics. Mar Ecol Prog Ser. 1999 May 18;181: 81–96.

84. McClanahan TR, Arthur R. The effect of marine reserves and habitat on populations of East African coral reef fishes. Ecological Applications. 2001 Apr;11(2):559–569.

85. Russ GR, Miller KI, Rizzari JR, Alcala AC. Long-term no-take marine reserve and benthic habitat effects on coral reef fishes. Mar Ecol Prog Ser. 2015 Jun 8;529: 233–248.

86. Mellin C, Kulbicki M, Ponton D. Seasonal and ontogenetic patterns of habitat use in coral reef fish juveniles. Estuar Coast Shelf Sci. 2007;75: 481–491. doi: 10.1016/j.ecss.2007.05.026

87. Jupiter SD, Weeks R, Jenkins AP, Egli DP, Cakacaka A. Effects of a single intensive harvest event on fish populations inside a customary marine closure. Coral Reefs. 2012;31: 321–334. doi: 10.1007/s00338-012-0888-x

88. Coleman FC, Koenig CC, Huntsman GR, Musick JA, Eklund AM, Mcgovern JC, et al. Long-lived reef fishes: The grouper-snapper complex. Fisheries. 2000;25: 14–21. doi: 10.1577/1548-8446(2000)025<0014:LRF>2.0.CO;2

89. Marshak AR, Appeldoorn RS. Evaluation of seasonal closures of red hind, Epinephelus guttatus, spawning aggregations to fishing of the west coast of Puerto Rico using fishery-dependent and independent time series data. Proc Gulf Caribb Fish Inst 2007;60: 566–572).

90. Sabat AM, Hernández EA, Toledo CG. Demographic analysis of the effect of fishing mortality on the red hind (Epinephelus guttatus) population in western Puerto Rico. Proc Gulf Caribb Fish Inst 2000;51: 169–181.

91. Nemeth RS, Herzlieb S, Blondeau J. Comparison of two seasonal closures for protecting red hind spawning aggregations in the US Virgin Islands. Proc 10th Int Coral Reef Symp 2006;4: 1306–1313.

92. Jones GP, Almany GR, Russ GR, Sale PF, Steneck RS, Van Oppen MJH, et al. Larval retention and connectivity among populations of corals and reef fishes: History, advances and challenges. Coral Reefs. 2009;28: 307–325. doi: 10.1007/s00338-009-0469-9

93. Almany GR, Hamilton RJ, Bode M, Matawai M, Potuku T, Saenz-Agudelo P, Planes S, Berumen ML, Rhodes KL, Thorrold SR, Russ GR. Dispersal of grouper larvae drives local resource sharing in a coral reef fishery. Curr Biol. 2013 Apr 8;23(7): 626–630. doi: 10.1016/j.cub.2013.03.006 23541728

94. Harrison HB, Williamson DH, Evans RD, Almany GR, Thorrold SR, Russ GR, Feldheim KA, Van Herwerden L, Planes S, Srinivasan M, Berumen ML. Larval export from marine reserves and the recruitment benefit for fish and fisheries. Curr Biology. 2012 Jun 5;22(11): 1023–1028.

95. MacNeil MA, Graham NAJ, Cinner JE, Wilson SK, Williams ID, Maina J, et al. Recovery potential of the world’s coral reef fishes. Nature. 2015;520: 341–344. doi: 10.1038/nature14358 25855298

96. McClanahan TR, Graham NAJ. Marine reserve recovery rates towards a baseline are slower for reef fish community life histories than biomass. Proc R Soc B Biol Sci. 2015;282: 20151938. doi: 10.1098/rspb.2015.1938 26702040

97. García-Rubies A, Hereu B, Zabala M. Long-Term Recovery Patterns and Limited Spillover of Large Predatory Fish in a Mediterranean MPA. PLoS One. 2013;8. doi: 10.1371/journal.pone.0073922 24069251

98. McClanahan TR, Graham NAJ, Calnan JM, MacNeil MA. Toward pristine biomass: reef fish recovery in coral reef marine protected areas in Kenya. Ecol Appl. 2007;17: 1055–1067. doi: 10.1890/06-1450 17555218

99. Russ GR, Alcala AC. Marine reserves: long-term protection is required for full recovery of predatory fish populations. Oecologia. 2004 Mar 1;138(4): 622–627. doi: 10.1007/s00442-003-1456-4 14716555


Článek vyšel v časopise

PLOS One


2019 Číslo 10

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Léčba bolesti v ordinaci praktického lékaře
nový kurz
Autoři: MUDr. PhDr. Zdeňka Nováková, Ph.D.

Revmatoidní artritida: včas a k cíli
Autoři: MUDr. Heřman Mann

Jistoty a nástrahy antikoagulační léčby aneb kardiolog - neurolog - farmakolog - nefrolog - právník diskutují
Autoři: doc. MUDr. Štěpán Havránek, Ph.D., prof. MUDr. Roman Herzig, Ph.D., doc. MUDr. Karel Urbánek, Ph.D., prim. MUDr. Jan Vachek, MUDr. et Mgr. Jolana Těšínová, Ph.D.

Léčba akutní pooperační bolesti
Autoři: doc. MUDr. Jiří Málek, CSc.

Nové antipsychotikum kariprazin v léčbě schizofrenie
Autoři: prof. MUDr. Cyril Höschl, DrSc., FRCPsych.

Všechny kurzy
Kurzy Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se