Surveillance of panicle positions by unmanned aerial vehicle to reveal morphological features of rice


Autoři: Daisuke Ogawa aff001;  Toshihiro Sakamoto aff002;  Hiroshi Tsunematsu aff001;  Toshio Yamamoto aff001;  Noriko Kanno aff001;  Yasunori Nonoue aff001;  Jun-ichi Yonemaru aff001
Působiště autorů: Institute of Crop Science, National Agricultural and Food Research Organization, Tsukuba, Japan aff001;  Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224386

Souhrn

Rice plant architecture affects biomass and grain yield. Thus, it is important to select rice genotypes with ideal plant architecture. High-throughput phenotyping by use of an unmanned aerial vehicle (UAV) allows all lines in a field to be observed in less time than with traditional procedures. However, discrimination of plants in dense plantings is difficult, especially during the reproductive stage, because leaves and panicles overlap. Here, we developed an original method that relies on using UAV to identify panicle positions for dissecting plant architecture and to distinguish rice lines by detecting red flags attached to panicle bases. The plant architecture of recombinant inbred lines derived from Japanese cultivars ‘Hokuriku 193’ and ‘Mizuhochikara’, which differ in plant architecture, was assessed using a commercial camera-UAV system. Orthomosaics were made from UAV digital images. The center of plants was plotted on the image during the vegetative stage. The horizontal distance from the center to the red flag during the reproductive stage was used as the panicle position (PP). The red flags enabled us to recognize the positions of the panicles at a rate of 92%. The PP phenotype was related to but was not identical with the phenotypes of the panicle base angle, leaf sheath angle, and score of spreading habit. These results indicate that PP on orthomosaics could be used as an index of plant architecture under field conditions.

Klíčová slova:

Crops – DNA sequence analysis – Habits – Leaves – Panicles – Principal component analysis – Quantitative trait loci – Rice


Zdroje

1. Yang G, Liu J, Zhao C, Li Z, Huang Y, Yu H, et al. Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives. Frontiers in plant science. 2017;8:1111. Epub 2017/07/18. doi: 10.3389/fpls.2017.01111 28713402; PubMed Central PMCID: PMC5492853.

2. Tardieu F, Cabrera-Bosquet L, Pridmore T, Bennett M. Plant Phenomics, From Sensors to Knowledge. Current biology: CB. 2017;27(15):R770–r83. Epub 2017/08/09. doi: 10.1016/j.cub.2017.05.055 28787611.

3. Araus JL, Kefauver SC, Zaman-Allah M, Olsen MS, Cairns JE. Translating High-Throughput Phenotyping into Genetic Gain. Trends in plant science. 2018;23(5):451–66. Epub 2018/03/21. doi: 10.1016/j.tplants.2018.02.001 29555431; PubMed Central PMCID: PMC5931794.

4. Simko I, Jimenez-Berni JA, Sirault XR. Phenomic Approaches and Tools for Phytopathologists. Phytopathology. 2017;107(1):6–17. Epub 2016/09/13. doi: 10.1094/PHYTO-02-16-0082-RVW 27618193.

5. Gracia-Romero A, Kefauver SC, Fernandez-Gallego JA, Vergara-Diaz O, Nieto-Taladriz MT, Araus JL. UAV and Ground Image-Based Phenotyping: A Proof of Concept with Durum Wheat. Remote Sens. 2019;11(10):25. doi: 10.3390/rs11101244 WOS:000480524800102.

6. Jin XL, Liu SY, Baret F, Hemerle M, Comar A. Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery. Remote Sens Environ. 2017;198:105–14. doi: 10.1016/j.rse.2017.06.007 WOS:000406818500009.

7. Wang X, Zhang R, Song W, Han L, Liu X, Sun X, et al. Dynamic plant height QTL revealed in maize through remote sensing phenotyping using a high-throughput unmanned aerial vehicle (UAV). Scientific reports. 2019;9(1):3458. Epub 2019/03/07. doi: 10.1038/s41598-019-39448-z 30837510; PubMed Central PMCID: PMC6401315.

8. Weiss M, Baret F. Using 3D Point Clouds Derived from UAV RGB Imagery to Describe Vineyard 3D Macro- Structure. Remote Sens. 2017;9(2):17. doi: 10.3390/rs9020111 WOS:000397013700013.

9. Singh D, Wang X, Kumar U, Gao L, Noor M, Imtiaz M, et al. High-Throughput Phenotyping Enabled Genetic Dissection of Crop Lodging in Wheat. Frontiers in plant science. 2019;10:394. Epub 2019/04/26. doi: 10.3389/fpls.2019.00394 31019521; PubMed Central PMCID: PMC6459080.

10. Tanger P, Klassen S, Mojica JP, Lovell JT, Moyers BT, Baraoidan M, et al. Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice. Scientific reports. 2017;7:42839. Epub 2017/02/22. doi: 10.1038/srep42839 28220807; PubMed Central PMCID: PMC5318881.

11. Chen Y, Lee WS, Gan H, Peres N, Fraisse C, Zhang YC, et al. Strawberry Yield Prediction Based on a Deep Neural Network Using High-Resolution Aerial Orthoimages. Remote Sens. 2019;11(13):21. doi: 10.3390/rs11131584 WOS:000477049000076.

12. Di Gennaro SF, Toscano P, Cinat P, Berton A, Matese A. A Low-Cost and Unsupervised Image Recognition Methodology for Yield Estimation in a Vineyard. Frontiers in plant science. 2019;10:559. Epub 2019/05/28. doi: 10.3389/fpls.2019.00559 31130974; PubMed Central PMCID: PMC6509744.

13. Duan B, Fang S, Zhu R, Wu X, Wang S, Gong Y, et al. Remote Estimation of Rice Yield With Unmanned Aerial Vehicle (UAV) Data and Spectral Mixture Analysis. Frontiers in plant science. 2019;10:204. Epub 2019/03/16. doi: 10.3389/fpls.2019.00204 30873194; PubMed Central PMCID: PMC6400984.

14. Wang F, Wang F, Zhang Y, Hu J, Huang J, Xie J. Rice Yield Estimation Using Parcel-Level Relative Spectral Variables From UAV-Based Hyperspectral Imagery. Frontiers in plant science. 2019;10:453. Epub 2019/04/27. doi: 10.3389/fpls.2019.00453 31024607; PubMed Central PMCID: PMC6468049.

15. Gong Y, Duan B, Fang S, Zhu R, Wu X, Ma Y, et al. Remote estimation of rapeseed yield with unmanned aerial vehicle (UAV) imaging and spectral mixture analysis. Plant methods. 2018;14:70. Epub 2018/08/29. doi: 10.1186/s13007-018-0338-z 30151031; PubMed Central PMCID: PMC6102863.

16. Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, et al. 'Green revolution' genes encode mutant gibberellin response modulators. Nature. 1999;400(6741):256–61. Epub 1999/07/27. doi: 10.1038/22307 10421366.

17. Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, et al. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature. 2002;416(6882):701–2. Epub 2002/04/19. doi: 10.1038/416701a 11961544.

18. Spielmeyer W, Ellis MH, Chandler PM. Semidwarf (sd-1), "green revolution" rice, contains a defective gibberellin 20-oxidase gene. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(13):9043–8. Epub 2002/06/22. doi: 10.1073/pnas.132266399 12077303; PubMed Central PMCID: PMC124420.

19. Wang B, Smith SM, Li J. Genetic Regulation of Shoot Architecture. Annual review of plant biology. 2018;69:437–68. Epub 2018/03/20. doi: 10.1146/annurev-arplant-042817-040422 29553800.

20. Mathan J, Bhattacharya J, Ranjan A. Enhancing crop yield by optimizing plant developmental features. Development (Cambridge, England). 2016;143(18):3283–94. Epub 2016/09/15. doi: 10.1242/dev.134072 27624833.

21. Teichmann T, Muhr M. Shaping plant architecture. Frontiers in plant science. 2015;6:233. Epub 2015/04/29. doi: 10.3389/fpls.2015.00233 25914710; PubMed Central PMCID: PMC4390985.

22. Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tanaka M, et al. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nature biotechnology. 2006;24(1):105–9. Epub 2005/12/22. doi: 10.1038/nbt1173 16369540.

23. Wang S, Wu K, Qian Q, Liu Q, Li Q, Pan Y, et al. Non-canonical regulation of SPL transcription factors by a human OTUB1-like deubiquitinase defines a new plant type rice associated with higher grain yield. Cell research. 2017;27(9):1142–56. Epub 2017/08/05. doi: 10.1038/cr.2017.98 28776570; PubMed Central PMCID: PMC5587855.

24. Atkin OK, Loveys BR, Atkinson LJ, Pons TL. Phenotypic plasticity and growth temperature: understanding interspecific variability. Journal of experimental botany. 2006;57(2):267–81. Epub 2005/12/24. doi: 10.1093/jxb/erj029 16371402.

25. Jagadish SV, Murty MV, Quick WP. Rice responses to rising temperatures—challenges, perspectives and future directions. Plant, cell & environment. 2015;38(9):1686–98. Epub 2014/08/22. doi: 10.1111/pce.12430 25142172.

26. Blackman BK. Changing Responses to Changing Seasons: Natural Variation in the Plasticity of Flowering Time. Plant physiology. 2017;173(1):16–26. Epub 2016/11/23. doi: 10.1104/pp.16.01683 27872243; PubMed Central PMCID: PMC5210766.

27. Ogawa D, Yamamoto E, Ohtani T, Kanno N, Tsunematsu H, Nonoue Y, et al. Haplotype-based allele mining in the Japan-MAGIC rice population. Scientific reports. 2018;8(1):4379. Epub 2018/03/14. doi: 10.1038/s41598-018-22657-3 29531264; PubMed Central PMCID: PMC5847589.

28. Weather Data Acquisition System of Institute for Agro-Environmental Sciences N. http://www.naro.affrc.go.jp/org/niaes/aws/ (Japanese language version).

29. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, et al. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987;1(2):174–81. Epub 1987/10/01. doi: 10.1016/0888-7543(87)90010-3 3692487.

30. Yonemaru J, Mizobuchi R, Kato H, Yamamoto T, Yamamoto E, Matsubara K, et al. Genomic regions involved in yield potential detected by genome-wide association analysis in Japanese high-yielding rice cultivars. BMC genomics. 2014;15:346. Epub 2014/06/03. doi: 10.1186/1471-2164-15-346 24885019; PubMed Central PMCID: PMC4035073.

31. Yu B, Lin Z, Li H, Li X, Li J, Wang Y, et al. TAC1, a major quantitative trait locus controlling tiller angle in rice. The Plant journal: for cell and molecular biology. 2007;52(5):891–8. Epub 2007/10/03. doi: 10.1111/j.1365-313X.2007.03284.x 17908158.

32. Fujita D, Trijatmiko KR, Tagle AG, Sapasap MV, Koide Y, Sasaki K, et al. NAL1 allele from a rice landrace greatly increases yield in modern indica cultivars. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(51):20431–6. Epub 2013/12/04. doi: 10.1073/pnas.1310790110 24297875; PubMed Central PMCID: PMC3870739.

33. Yano K, Yamamoto E, Aya K, Takeuchi H, Lo PC, Hu L, et al. Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nature genetics. 2016;48(8):927–34. Epub 2016/06/21. doi: 10.1038/ng.3596 27322545.

34. Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, et al. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes & development. 2004;18(8):926–36. Epub 2004/04/14. doi: 10.1101/gad.1189604 15078816; PubMed Central PMCID: PMC395851.

35. Yamamoto T, Taguchi-Shiobara F, Ukai Y, Sasaki T, Yano M. Mapping quantitative trait loci for days-to-heading, and culm, panicle and internode lengths in a BC1F3 population using an elite rice variety, Koshihikari, as the recurrent parent. Breeding science. 2001;51(2):63–71. doi: 10.1270/jsbbs.51.63 WOS:000170277000001.


Článek vyšel v časopise

PLOS One


2019 Číslo 10