#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Synbiotic supplementation to decrease Salmonella colonization in the intestine and carcass contamination in broiler birds


Autoři: R. Shanmugasundaram aff001;  M. Mortada aff001;  D. E. Cosby aff002;  M. Singh aff001;  T. J. Applegate aff001;  B. Syed aff003;  C. M. Pender aff004;  S. Curry aff004;  G. R. Murugesan aff004;  R. K. Selvaraj aff001
Působiště autorů: Department of Poultry Sciences, University of Georgia, Athens, GA, United States of America aff001;  USDA-ARS, Athens, GA, United States of America aff002;  BIOMIN Holding GmbH, Getzersdorf, Austria aff003;  BIOMIN America Inc., Overland Park, KS, United States of America aff004
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0223577

Souhrn

In vitro and in vivo experiments were conducted to study the effects of synbiotic supplementation on Salmonella enterica ser. Enteritidis (SE) proliferation, cecal content load, and broiler carcass contamination. Lactobacillus reuteri, Enterococcus faecium, Bifidobacterium animalis, and Pediococcus acidilactici culture supernatants decreased (P < 0.05) the in vitro proliferation of SE at 1:1 supernatant: pathogen dilution. A total of 240 Cobb-500 broiler chicks were randomly allotted to three treatment groups (8 replicates/group with 10 birds/replicate): control (basal diet), antibiotic (Virginiamycin at 20 mg/kg feed), synbiotic (PoultryStar® ME at 0.5 g/kg feed containing L. reuteri, E. faecium, B. animalis, P. acidilactici and a Fructooligosaccharide) from day of hatch. At 21 d of age, all birds in experimental groups were orally inoculated with 250 μl of 1 X 109 CFU SE. Antibiotic supplementation increased (P < 0.05) body weight and feed consumption, compared to the control group. Birds in the synbiotic supplementation had intermediate body weight and feed consumption that were not significantly different from both the control and antibiotic group at 42 d of age in SE infected birds. No significant effects were observed in feed efficiency at 42 d of age among the groups. Antibiotic and synbiotic supplementation decreased (P < 0.05) SE load in cecal contents by 0.90 and 0.85 log units/ g and carcass SE load by 1.4 and 1.5 log units/mL of rinsate compared to the control group at 42 d of age (21 dpi). The relative abundance of IL-10, IL-1, TLR-4, and IFNγ mRNA was decreased (P < 0.05) in the antibiotic and synbiotic supplementation groups compared to the control birds at 42 d of age (21 dpi). It can be concluded that synbiotic supplementation decreased SE proliferation in vitro and decreased SE load in the cecal contents and broiler carcass.

Klíčová slova:

Antibiotics – Birds – Gastrointestinal tract – Chickens – Probiotics – Salmonella – Salmonellosis – Tonsils


Zdroje

1. Kao JY, Zhang M, Miller MJ, Mills JC, Wang B, Liu M, et al. Helicobacter pylori immune escape is mediated by dendritic cell-induced Treg skewing and Th17 suppression in mice. Gastroenterology. 2010;138(3):1046–54. Epub 2009/11/26. S0016-5085(09)02060-5 [pii] doi: 10.1053/j.gastro.2009.11.043 19931266.

2. Bailey JS, Stern NJ, Fedorka-Cray P, Craven SE, Cox NA, Cosby DE, et al. Sources and movement of Salmonella through integrated poultry operations: a multistate epidemiological investigation. J Food Prot. 2001;64(11):1690–7. Epub 2001/12/01. doi: 10.4315/0362-028x-64.11.1690 11726145.

3. Rothrock MJ Jr., Ingram KD, Gamble J, Guard J, Cicconi-Hogan KM, Hinton A Jr., et al. The characterization of Salmonella enterica serotypes isolated from the scalder tank water of a commercial poultry processing plant: Recovery of a multidrug-resistant Heidelberg strain. Poult Sci. 2015;94(3):467–72. doi: 10.3382/ps/peu060 25681479.

4. Byrd JA, DeLoach JR, Corrier DE, Nisbet DJ, Stanker LH. Evaluation of salmonella serotype distributions from commercial broiler hatcheries and grower houses. Avian Dis. 1999;43(1):39–47. doi: 10.2307/1592760 WOS:000081987800006. 10216758

5. Davies RH, Wray C. Studies of contamination of three broiler breeder houses with Salmonella enteritidis before and after cleansing and disinfection. Avian Dis. 1996;40(3):626–33. Epub 1996/07/01. 8883794.

6. White PL, Naugle AL, Jackson CR, Fedorka-Cray PJ, Rose BE, Pritchard KM, et al. Salmonella Enteritidis in meat, poultry, and pasteurized egg products regulated by the US food safety and inspection service, 1998 through 2003. Journal of Food Protection. 2007;70(3):582–91. doi: 10.4315/0362-028x-70.3.582 WOS:000244736600007. 17388045

7. Vugia DJ, Samuel M, Farley MM, Marcus R, Shiferaw B, Shallow S, et al. Invasive Salmonella infections in the United States, FoodNet, 1996–1999: incidence, serotype distribution, and outcome. Clin Infect Dis. 2004;38 Suppl 3:S149–56. doi: 10.1086/381581 15095184.

8. TODD ECD, GREIG JD, BARTLESON CA, MICHAELS BS. Outbreaks Where Food Workers Have Been Implicated in the Spread of Foodborne Disease. Part 4. Infective Doses and Pathogen Carriage. Journal of Food Protection. 2008;71(11):2339–73. doi: 10.4315/0362-028x-71.11.2339 19044283

9. Shanmugasundaram R, Kogut MH, Arsenault RJ, Swaggerty CL, Cole K, Reddish JM, et al. Effect of Salmonella infection on cecal tonsil regulatory T cell properties in chickens. Poult Sci. 2015;94(8):1828–35. doi: 10.3382/ps/pev161 26049799.

10. Lu J, Hofacre C, Smith F, Lee M. Effects of feed additives on the development on the ileal bacterial community of the broiler chicken. Animal. 2008;2(5):669–76. doi: 10.1017/S1751731108001894 22443592

11. Morningstar-Shaw B, Mackie T, Barker D, Palmer E. Salmonella Serotypes Isolated from Animals and Related Sources. Ames: United States Department of Agriculture (USDA), National Veterinary Services Laboratories. 2016.

12. Varmuzova K, Faldynova M, Elsheimer-Matulova M, Sebkova A, Polansky O, Havlickova H, et al. Immune protection of chickens conferred by a vaccine consisting of attenuated strains of Salmonella Enteritidis, Typhimurium and Infantis. Veterinary research. 2016;47(1):94. doi: 10.1186/s13567-016-0371-8 27741950

13. Koutsoumanis K, Allende A, Alvarez-Ordonez A, Bolton D, Bover-Cid S, Chemaly M, et al. Salmonella control in poultry flocks and its public health impact. Efsa J. 2019;17(2). ARTN 5596 doi: 10.2903/j.efsa.2019.5596 WOS:000459860800006.

14. Fuller. Probiotics in man and animals. Journal of Applied Microbiology. 1989;66(5):365–78.

15. Tuomola EM, Ouwehand AC, Salminen SJ. The effect of probiotic bacteria on the adhesion of pathogens to human intestinal mucus. FEMS Immunol Med Microbiol. 1999;26(2):137–42. Epub 1999/10/28. doi: 10.1111/j.1574-695X.1999.tb01381.x 10536300.

16. Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr. 1995;125(6):1401–12. doi: 10.1093/jn/125.6.1401 7782892.

17. Ricke SC. Potential of fructooligosaccharide prebiotics in alternative and nonconventional poultry production systems. Poult Sci. 2015;94(6):1411–8. Epub 2015/02/27. doi: 10.3382/ps/pev049 25717086.

18. Durant JA, Corrier DE, Ricke SC. Short-chain volatile fatty acids modulate the expression of the hilA and invF genes of Salmonella Typhimurium. J Food Protect. 2000;63(5):573–8. doi: 10.4315/0362-028x-63.5.573 WOS:000086925700003. 10826713

19. Ricke SC. Potential of fructooligosaccharide prebiotics in alternative and nonconventional poultry production systems. Poultry Science. 2015;94(6):1411–8. doi: 10.3382/ps/pev049 WOS:000355189700035. 25717086

20. Khaksefidi A, Rahimi S. Effect of Probiotic inclusion in the diet of broiler chickens on performance, feed efficiency and carcass quality. Asian Austral J Anim. 2005;18(8):1153–6. doi: 10.5713/ajas.2005.1153 WOS:000229447500016.

21. Zhu XY, Zhong T, Pandya Y, Joerger RD. 16S rRNA-based analysis of microbiota from the cecum of broiler chickens. Appl Environ Microbiol. 2002;68(1):124–37. Epub 2002/01/05. doi: 10.1128/AEM.68.1.124-137.2002 11772618; PubMed Central PMCID: PMC126585.

22. De Medici D, Croci L, Delibato E, Di Pasquale S, Filetici E, Toti L. Evaluation of DNA Extraction Methods for Use in Combination with SYBR Green I Real-Time PCR To Detect Salmonella enterica Serotype Enteritidis in Poultry. Appl Environ Microb. 2003;69(6):3456–61. doi: 10.1128/aem.69.6.3456–3461.2003

23. Shanmugasundaram R, Mortada MH, Murugesan RG, Selvaraj RK. In-vitro Characterization and Analysis of Probiotic Species in the Chicken Intestine by Real-time Polymerase Chain Reaction. Poult Sci. 2019:In Press.

24. Santos FBO, Li X, Payne JB, Sheldon BW. Estimation of Most Probable Number Salmonella Populations on Commercial North Carolina Turkey Farms. The Journal of Applied Poultry Research. 2005;14(4):700–8. doi: 10.1093/japr/14.4.700

25. Selvaraj RK, Klasing KC. Lutein and Eicosapentaenoic Acid Interact to Modify iNOS mRNA Levels through the PPAR{gamma}/RXR Pathway in Chickens and HD11 Cell Lines. J Nutr. 2006;136(6):1610–6. doi: 10.1093/jn/136.6.1610 16702329

26. Shanmugasundaram R, Selvaraj RK. In vitro human TGF-beta treatment converts CD4(+)CD25(-) T cells into induced T regulatory like cells. Vet Immunol Immunopathol. 2010;137(1–2):161–5. Epub 2010/08/06. doi: 10.1016/j.vetimm.2010.04.017 20684851.

27. Selvaraj RK, Shanmugasundaram R, Klasing KC. Effects of dietary lutein and PUFA on PPAR and RXR isomer expression in chickens during an inflammatory response. Comp Biochem Physiol a: Mol Integ Physiol. 2010;157(3):198–203.

28. Ramakers C, Ruijter JM, Deprez RH, Moorman AF. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett. 2003;339(1):62–6. Epub 2003/03/06. S0304394002014234 [pii]. doi: 10.1016/s0304-3940(02)01423-4 12618301.

29. Corcionivoschi N, Drinceanu D, Stef L, Luca I, Julean C, Mingyart O. Probiotics—identification and ways of action. Innovative Romanian Food Biotechnology. 2010;6:1–11.

30. Turner MS, Hafner LM, Walsh T, Giffard PM. Identification, characterisation and specificity of a cell wall lytic enzyme from Lactobacillus fermentum BR11. FEMS Microbiol Lett. 2004;238(1):9–15. Epub 2004/09/01. doi: 10.1016/j.femsle.2004.07.008 15336396.

31. Ghadban GS. Probiotics in broiler production—a review. Arch Geflugelkd. 2002;66(2):49–58. WOS:000175786700001.

32. Brisbin JT, Parvizi P, Sharif S. Differential cytokine expression in T-cell subsets of chicken caecal tonsils co-cultured with three species of Lactobacillus. Benef Microbes. 2012;3(3):205–10. doi: 10.3920/BM2012.0014 22968409.

33. Jamuna M, Jeevaratnam K. Isolation and partial characterization of bacteriocins from Pediococcus species. Appl Microbiol Biotechnol. 2004;65(4):433–9. doi: 10.1007/s00253-004-1576-8 15205931.

34. Bielecka M, Biedrzycka E, Biedrzycka E, Smoragiewicz W, Smieszek M. Interaction of Bifidobacterium and Salmonella during associated growth. Int J Food Microbiol. 1998;45(2):151–5. Epub 1999/01/30. doi: 10.1016/s0168-1605(98)00150-0 9924946.

35. Pesciaroli M, Cucco L, De Luca S, Massacci FR, Maresca C, Medici L, et al. Association between pigs with high caecal Salmonella loads and carcass contamination. International Journal of Food Microbiology. 2017;242:82–6. doi: 10.1016/j.ijfoodmicro.2016.11.021 WOS:000392045200011. 27914322

36. Rose N, Beaudeau F, Drouin P, Toux JY, Rose V, Colin P. Risk factors for Salmonella enterica subsp. enterica contamination in French broiler-chicken flocks at the end of the rearing period. Prev Vet Med. 1999;39(4):265–77. Epub 1999/05/18. 10327442.

37. FAO/WHO. Salmonella and Campylobacter in chicken meat. 2009 Microbiological Risk Assessment Series No. 19. Rome 56 pp.

38. Kogut MH, He HQ, Kaiser P. Lipopolysaccharide binding protein/CD14/TLR4-dependent recognition of Salmonella LPS induces the functional activation of chicken heterophils and up-regulation of pro-inflammatory cytokine and chemokine gene expression in these cells. Animal Biotechnology. 2005;16(2):165–81. doi: 10.1080/10495390500264896 WOS:000233299700007. 16335810

39. Kim YG, Ohta T, Takahashi T, Kushiro A, Nomoto K, Yokokura T, et al. Probiotic Lactobacillus casei activates innate immunity via NF-kappa B and p38 MAP kinase signaling pathways. Microbes Infect. 2006;8(4):994–1005. doi: 10.1016/j.micinf.2005.10.019 WOS:000237754100005. 16513392

40. Haghighi HR, Abdul-Careem MF, Dara RA, Chambers JR, Sharif S. Cytokine gene expression in chicken cecal tonsils following treatment with probiotics and Salmonella infection. Vet Microbiol. 2008;126(1–3):225–33. doi: 10.1016/j.vetmic.2007.06.026 WOS:000251924700024. 17681719

41. Arai T, Hiromatsu K, Nishimura H, Kimura Y, Kobayashi N, Ishida H, et al. Effects of in vivo administration of anti-IL-10 monoclonal antibody on the host defence mechanism against murine Salmonella infection. Immunology. 1995;85(3):381–8. Epub 1995/07/01. 7558125; PubMed Central PMCID: PMC1383910.


Článek vyšel v časopise

PLOS One


2019 Číslo 10
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

KOST
Koncepce osteologické péče pro gynekology a praktické lékaře
nový kurz
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Svět praktické medicíny 5/2023 (znalostní test z časopisu)

Imunopatologie? … a co my s tím???
Autoři: doc. MUDr. Helena Lahoda Brodská, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#