#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

[Fam-] trastuzumab deruxtecan (DS-8201a)-induced antitumor immunity is facilitated by the anti–CTLA-4 antibody in a mouse model


Autoři: Tomomi Nakayama Iwata aff001;  Kiyoshi Sugihara aff001;  Teiji Wada aff001;  Toshinori Agatsuma aff001
Působiště autorů: Oncology Research Laboratories I, R&D Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan aff001
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222280

Souhrn

[Fam-] trastuzumab deruxtecan (DS-8201a) is a HER2 (ERBB2)-targeting antibody-drug conjugate, composed of a HER2-targeting antibody and a topoisomerase I inhibitor, exatecan derivative, that has antitumor effects in preclinical xenograft models and clinical trials. Recently, [fam-] trastuzumab deruxtecan was reported to enhance antitumor immunity and was beneficial in combination with an anti–PD-1 antibody in a mouse model. In this study, the antitumor effect of [fam-] trastuzumab deruxtecan in combination with an anti–CTLA-4 antibody was evaluated. [Fam-] trastuzumab deruxtecan monotherapy had antitumor activity in an immunocompetent mouse model with EMT6 human HER2-expressing mouse breast cancer cells (EMT6-hHER2). [Fam-] trastuzumab deruxtecan in combination with the anti–CTLA-4 antibody induced more potent antitumor activity than that by monotherapy with either agent. The combination therapy increased tumor-infiltrating CD4+ and CD8+ T cells in vivo. Mechanistically, cured mice with treatment of [fam-] trastuzumab deruxtecan and an anti–CTLA-4 antibody completely rejected EMT6-mock cells similar to EMT6-hHER2 cells, and splenocytes from the cured mice responded to both EMT6-hHER2 and EMT6-mock cells as measured by interferon-gamma release. Taken together, these results indicate that antitumor immunity is induced by [fam-] trastuzumab deruxtecan and is facilitated in combination with anti–CTLA-4 antibody.

Klíčová slova:

Antibodies – Cancer treatment – Cytotoxic T cells – Enzyme-linked immunoassays – Flow cytometry – Immunohistochemistry techniques – Mouse models – T cells


Zdroje

1. Ogitani Y, Aida T, Hagihara K, Yamaguchi J, Ishii C, Harada N, et al. DS-8201a, A novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin Cancer Res. 2016;22(20):5097–5108. doi: 10.1158/1078-0432.CCR-15-2822 27026201

2. Ogitani Y, Hagihara K, Oitate M, Naito H, Agatsuma T. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody–drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci. 2016;107(7):1039–1046. doi: 10.1111/cas.12966 27166974

3. Doi T, Shitara K, Naito Y, Shimomura A, Fujiwara Y, Yonemori K, et al. Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody–drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: a phase 1 dose-escalation study. Lancet Oncol. 2017;18(11):1512–1522. doi: 10.1016/S1470-2045(17)30604-6 29037983

4. Tamura K, Tsurutani J, Takahashi S, Iwata H, Krop IE, Redfern C, et al. Trastuzumab deruxtecan (DS-8201a) in patients with advanced HER2-positive breast cancer previously treated with trastuzumab emtansine: a dose-expansion, phase 1 study. Lancet Oncol. 2019;20(6):816–826. doi: 10.1016/S1470-2045(19)30097-X 31047803

5. Shitara K, Iwata H, Takahashi S, Tamura K, Park H, Modi S, et al. Trastuzumab deruxtecan (DS-8201a) in patients with advanced HER2-positive gastric cancer: a dose-expansion, phase 1 study. Lancet Oncol. 2019;20(6):827–836. doi: 10.1016/S1470-2045(19)30088-9 31047804

6. Iwata H, Tamura K, Doi T, Tsurutani J, Modi S, Park H, et al. Trastuzumab deruxtecan (DS-8201a) in subjects with HER2-expressing solid tumors: Long-term results of a large phase 1 study with multiple expansion cohorts. J Clin Oncol 2018;36(15_suppl):2501–2501.

7. Bracci L, Schiavoni G, Sistigu A, Belardelli F. Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer. Cell Death Differ. 2014;21(1):15–25. doi: 10.1038/cdd.2013.67 23787994

8. Gerber H-P, Sapra P, Loganzo F, May C. Combining antibody–drug conjugates and immune-mediated cancer therapy: What to expect? Biochem Pharmacol. 2016;102 : 1–6. doi: 10.1016/j.bcp.2015.12.008 26686577

9. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10. doi: 10.1016/j.immuni.2013.07.012 23890059

10. Martin K, Müller P, Schreiner J, Prince SS, Lardinois D, Heinzelmann-Schwarz VA, et al. The microtubule-depolymerizing agent ansamitocin P3 programs dendritic cells toward enhanced anti-tumor immunity. Cancer Immunol Immunother. 2014;63(9):925–938. doi: 10.1007/s00262-014-1565-4 24906866

11. McKenzie JA, Mbofung RM, Malu S, Zhang M, Ashkin E, Devi S, et al. The effect of topoisomerase I inhibitors on the efficacy of T-cell-based cancer immunotherapy. J Nat Cancer Inst. 2018;110(7):777–786. doi: 10.1093/jnci/djx257 29267866

12. Kitai Y, Kawasaki T, Sueyoshi T, Kobiyama K, Ishii KJ, Zou J, et al. DNA-containing exosomes derived from cancer cells treated with topotecan activate a STING-dependent pathway and reinforce antitumor immunity. J Immunol. 2017. 198(4):1649–1659. doi: 10.4049/jimmunol.1601694 28069806

13. Menon S, Shin S, Dy G. Advances in cancer immunotherapy in solid tumors. Cancers. 2016;8(12):106.

14. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–264. doi: 10.1038/nrc3239 22437870

15. Wolchok JD. PD-1 blockers. Cell. 2015;162(5):937. doi: 10.1016/j.cell.2015.07.045 26317459

16. Swart M, Verbrugge I, Beltman JB. Combination approaches with immune-checkpoint blockade in cancer therapy. Front Oncol. 2016;6 : 233–249. doi: 10.3389/fonc.2016.00233 27847783

17. Peng J, Hamanishi J, Matsumura N, Abiko K, Murat K, Baba T, et al. Chemotherapy induces programmed cell death-ligand 1 overexpression via the nuclear factor-κB to foster an immunosuppressive tumor microenvironment in ovarian cancer. Cancer Res. 2015;75(23):5034–5045. doi: 10.1158/0008-5472.CAN-14-3098 26573793

18. Cook AM, Lesterhuis WJ, Nowak AK, Lake RA. Chemotherapy and immunotherapy: mapping the road ahead. Curr Opin Immunol. 2016;39 : 23–29. doi: 10.1016/j.coi.2015.12.003 26724433

19. Iwata TN, Ishii C, Ishida S, Ogitani Y, Wada T, Agatsuma T. A HER2-targeting antibody–drug conjugate, trastuzumab deruxtecan (DS-8201a), enhances antitumor immunity in a mouse model. Molecul Cancer Therapeut. 2018;17(7):1494–1503.

20. Nakada T, Masuda T, Naito H, Yoshida M, Ashida S, Morita K, et al. Novel antibody drug conjugates containing exatecan derivative-based cytotoxic payloads. Bioorg Med Chem Lett. 2016;26(6):1542–1545. doi: 10.1016/j.bmcl.2016.02.020 26898815

21. Gabrysiak M, Wachowska M, Barankiewicz J, Pilch Z, Ratajska A, Skrzypek EWA, et al. Low dose of GRP78-targeting subtilase cytotoxin improves the efficacy of photodynamic therapy in vivo. Oncol Rep. 2016;35(6):3151–3158. doi: 10.3892/or.2016.4723 27035643

22. Penichet ML, Challita PM, Shin SU, Sampogna SL, Rosenblatt JD, Morrison SL. In vivo properties of three human HER2/neu-expressing murine cell lines in immunocompetent mice. Lab Anim Sci. 1999;49(2):179–188. 10331548

23. Zhao L, Tong Q, Qian W, Li B, Zhang D, Fu T, et al. Eradication of non-Hodgkin lymphoma through the induction of tumor-specific T-cell immunity by CD20-Flex BiFP. Blood. 2013;122(26):4230–4236. doi: 10.1182/blood-2013-04-496554 24178967

24. Scheuer W, Friess T, Burtscher H, Bossenmaier B, Endl J, Hasmann M. Strongly enhanced antitumor activity of trastuzumab and pertuzumab combination treatment on HER2-positive human xenograft tumor models. Cancer Res. 2009;69(24):9330–9336. doi: 10.1158/0008-5472.CAN-08-4597 19934333

25. Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. The Lancet Oncology. 2016;17(12):e542–e51. doi: 10.1016/S1470-2045(16)30406-5 27924752

26. Wolchok JD, Hodi FS, Weber JS, Allison JP, Urba WJ, Robert C, et al. Development of ipilimumab: a novel immunotherapeutic approach for the treatment of advanced melanoma. Ann NY Acad Sci. 2013;1291(1):1–13.

27. Sharma P, Allison James P. Immune checkpoint targeting in cancer therapy: Toward combination strategies with curative potential. Cell. 2015;161(2):205–214. doi: 10.1016/j.cell.2015.03.030 25860605

28. Andersen MH, Schrama D, thor Straten P, Becker JC. Cytotoxic T Cells. Journal of Investigative Dermatology. 2006;126 : 32–41. doi: 10.1038/sj.jid.5700001 16417215

29. Mok S, Duffy CR, Allison JP. J Immunol. 2018 : 200 (1 Supplement) 122.2

30. Seidel JA, Otsuka A, Kabashima K. Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations. Frontiers in oncology. 2018;8 : 86. doi: 10.3389/fonc.2018.00086 29644214

31. OPDIVO (Nivolumab) label [revised 2018 Nov; cited 2019 Feb 1]. Available from: https://packageinserts.bms.com/pi/pi_opdivo.pdf. 2018.


Článek vyšel v časopise

PLOS One


2019 Číslo 10
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Čelistně-ortodontické kazuistiky od A do Z
nový kurz
Autoři: MDDr. Eleonóra Ivančová, PhD., MHA

Mepolizumab v reálné klinické praxi
Autoři: MUDr. Eva Voláková, Ph.D.

BONE ACADEMY 2025
Autoři: prof. MUDr. Pavel Horák, CSc., doc. MUDr. Ludmila Brunerová, Ph.D., doc. MUDr. Václav Vyskočil, Ph.D., prim. MUDr. Richard Pikner, Ph.D., MUDr. Olga Růžičková, MUDr. Jan Rosa, prof. MUDr. Vladimír Palička, CSc., Dr.h.c.

Cesta pacienta nejen s SMA do nervosvalového centra
Autoři: MUDr. Jana Junkerová, MUDr. Lenka Juříková

Svět praktické medicíny 2/2025 (znalostní test z časopisu)

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#