The synergistic effects of TaAGP.L-B1 and TaSSIVb-D mutations in wheat lead to alterations of gene expression patterns and starch content in grain development

Autoři: Shunlin Zhang aff001;  Huijun Guo aff001;  Ahsan Irshad aff001;  Yongdun Xie aff001;  Linshu Zhao aff001;  Hongchun Xiong aff001;  Jiayu Gu aff001;  Shirong Zhao aff001;  Yuping Ding aff001;  Luxiang Liu aff001
Působiště autorů: Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China aff001
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223783


Starch is synthesized from a series of reactions catalyzed by enzymes. ADP-glucose pyrophosphorylase (AGPase) initiates the synthesis pathway and synthesizes ADP-glucose, the substrate of starch synthase (SS), of which SSIV is an isoform. Mutations of the AGPase subunit and SSIV-coding genes affect starch content and cause variation in the number of granules. Here, we pyramided the functional mutation alleles of the AGPase subunit gene TaAGP.L-B1 and the SSIV-coding gene TaSSIVb-D to elucidate their synergistic effects on other key starch biosynthesis genes and their impact on starch content. Both the TaAGP.L-B1 and TaSSIVb-D genes were expressed in wheat grain development, and the expression level of TaAGP.L-B1 was higher than that of TaSSIVb-D. The TaAGP.L-B1 gene was downregulated in the agp.L-B1 single and agp.L-B1/ssIV-D double mutants at 12 to 18 days after flowering (DAF). TaSSIVb-D expression was significantly reduced at 6 DAF in both ssIV-D single and double mutants. In the agp.L-B1/ssIV-D double mutant, TaGBSSII was upregulated, while TaAGPSS, TaSSI, and TaSBEII were downregulated. Under the interaction of these genes, the total starch and amylopectin contents were significantly decreased in agp.L-B1 and agp.L-B1/ssIV-D mutants. The results suggested that the mutations of TaAGP.L-B1 and TaSSIVb-D genes resulted in variation in the expression patterns of the other four starch synthetic genes and led to a reduction in starch and amylopectin contents. These mutants could be used further as germplasm for resistant starch analysis.

Klíčová slova:

Biosynthesis – Enzymes – Gene expression – Genetically modified plants – Mutation – Point mutation – Starches – Wheat


1. Martin C, Smith AM. starch biosynthesis. Plant Cell. 1995;7:971–85. doi: 10.1105/tpc.7.7.971 7640529

2. Raigond P, Ezekiel R, Raigond B. Resistant starch in food: a review. J Sci Food Agric. 2015;95(10):1968–78. doi: 10.1002/jsfa.6966 25331334

3. Tuncel A, Okita TW. Improving starch yield in cereals by over-expression of ADPglucose pyrophosphorylase: expectations and unanticipated outcomes. Plant Sci. 2013;211:52–60. Epub 2013/08/31. doi: 10.1016/j.plantsci.2013.06.009 23987811.

4. Huang B, Hennen-Bierwagen TA, Myers AM. Functions of multiple genes encoding ADP-glucose pyrophosphorylase subunits in maize endosperm, embryo, and leaf. Plant Physiol. 2014;164(2):596–611. Epub 2014/01/02. doi: 10.1104/pp.113.231605 24381067

5. Smidansky ED, Clancy M, Meyer FD, Lanning SP, Blake NK, Talbert LE, et al. Enhanced ADP-glucose pyrophosphorylase activity in wheat endosperm increases seed yield. Proc Natl Acad Sci U S A. 2002;99(3):1724–9. Epub 2002/02/07. doi: 10.1073/pnas.022635299 11830676

6. Smidansky ED, Meyer FD, Blakeslee B, Weglarz TE, Greene TW, Giroux MJ. Expression of a modified ADP-glucose pyrophosphorylase large subunit in wheat seeds stimulates photosynthesis and carbon metabolism. Planta. 2007;225(4):965–76. Epub 2006/10/06. doi: 10.1007/s00425-006-0400-3 17021802.

7. Kang G, Liu G, Peng X, Wei L, Wang C, Zhu Y, et al. Increasing the starch content and grain weight of common wheat by overexpression of the cytosolic AGPase large subunit gene. Plant Physiol Biochem. 2013;73:93–8. Epub 2013/10/02. doi: 10.1016/j.plaphy.2013.09.003 24080395.

8. Zhang XW, Li SY, Zhang LL, Yang Q, Jiang QT, Ma J, et al. Structure and expression analysis of genes encoding ADP-glucose pyrophosphorylase large subunit in wheat and its relatives. Genome. 2016;59(7):501–7. Epub 2016/06/15. doi: 10.1139/gen-2016-0007 27299732.

9. Rose MK, Huang XQ, Brule-Babel A. Molecular characterization and sequence diversity of genes encoding the large subunit of the ADP-glucose pyrophosphorylase in wheat (Triticum aestivum L.). J Appl Genet. 2016;57(1):15–25. Epub 2015/06/26. doi: 10.1007/s13353-015-0298-1 26109252.

10. Guo H, Yan Z, Li X, Xie Y, Xiong H, Liu Y, et al. Development of a High-Efficient Mutation Resource with Phenotypic Variation in Hexaploid Winter Wheat and Identification of Novel Alleles in the TaAGP.L-B1 Gene. Front. Plant Sci. 2017;8:1404. doi: 10.3389/fpls.2017.01404 28848598

11. Leterrier M, Holappa LD, Broglie KE, Beckles DM. Cloning, characterisation and comparative analysis of a starch synthase IV gene in wheat: functional and evolutionary implications. BMC Plant Biol. 2008;8:98. Epub 2008/10/02. doi: 10.1186/1471-2229-8-98 18826586

12. Ragel P, Streb S, Feil R, Sahrawy M, Annunziata MG, Lunn JE, et al. Loss of starch granule initiation has a deleterious effect on the growth of arabidopsis plants due to an accumulation of ADP-glucose. Plant Physiol. 2013;163(1):75–85. Epub 2013/07/23. doi: 10.1104/pp.113.223420 23872660

13. Dian W, Jiang H, Wu P. Evolution and expression analysis of starch synthase III and IV in rice. J Exp Bot. 2005;56(412):623–32. Epub 2005/01/12. doi: 10.1093/jxb/eri065 15642712.

14. Szydlowski N, Ragel P, Raynaud S, Lucas MM, Roldan I, Montero M, et al. Starch granule initiation in Arabidopsis requires the presence of either class IV or class III starch synthases. Plant Cell. 2009;21(8):2443–57. Epub 2009/08/12. doi: 10.1105/tpc.109.066522 19666739

15. Guo H, Liu Y, Li X, Yan Z, Xie Y, Xiong H, et al. Novel mutant alleles of the starch synthesis gene TaSSIVb-D result in the reduction of starch granule number per chloroplast in wheat. BMC Genomics. 2017;18(1):358. Epub 2017/05/10. doi: 10.1186/s12864-017-3724-4 28482814

16. Toyosawa Y, Kawagoe Y, Matsushima R, Crofts N, Ogawa M, Fukuda M, et al. Deficiency of Starch Synthase IIIa and IVb Alters Starch Granule Morphology from Polyhedral to Spherical in Rice Endosperm. Plant Physiol. 2016;170:1255–70. doi: 10.1104/pp.15.01232 26747287

17. Gamez-Arjona FM, Li J, Raynaud S, Baroja-Fernandez E, Munoz FJ, Ovecka M, et al. Enhancing the expression of starch synthase class IV results in increased levels of both transitory and long-term storage starch. Plant Biotechnol J. 2011;9(9):1049–60. Epub 2011/06/08. doi: 10.1111/j.1467-7652.2011.00626.x 21645200.

18. Nakamura Y. Biosynthesis of Reserve Starch. 2015:161–209. doi: 10.1007/978-4-431-55495-0_5

19. Singh A, Kumar P, Sharma M, Tuli R, Dhaliwal HS, Chaudhury A, et al. Expression patterns of genes involved in starch biosynthesis during seed development in bread wheat (Triticum aestivum). Mol Breed. 2015;35(9):184. doi: 10.1007/s11032-015-0371-9

20. Botticella E, Sestili F, Sparla F, Moscatello S, Marri L, Cuesta-Seijo JA, et al. Combining mutations at genes encoding key enzymes involved in starch synthesis affects the amylose content, carbohydrate allocation and hardness in the wheat grain. Plant Biotechnol J. 2018;16:1723–34. Epub 2018/03/03. doi: 10.1111/pbi.12908 29499105.

21. Botticella E, Sestili F, Ferrazzano G, Mantovani P, Cammerata A, D’Egidio MG, et al. The impact of the SSIIa null mutations on grain traits and composition in durum wheat. Breed Sci. 2016;66(4):572–9. Epub 2016/11/01. doi: 10.1270/jsbbs.16025 27795682

22. Mishra A, Singh A, Sharma M, Kumar P, Roy J. Development of EMS-induced mutation population for amylose and resistant starch variation in bread wheat (Triticum aestivum) and identification of candidate genes responsible for amylose variation. BMC Plant Biol. 2016;16(1):217. Epub 2016/10/08. doi: 10.1186/s12870-016-0896-z 27716051

23. Saripalli G, Gupta PK. AGPase: its role in crop productivity with emphasis on heat tolerance in cereals. Theor Appl Genet. 2015;128(10):1893–916. Epub 2015/07/15. doi: 10.1007/s00122-015-2565-2 26152573.

24. Brust H, Lehmann T, D’Hulst C, Fettke J. Analysis of the functional interaction of Arabidopsis starch synthase and branching enzyme isoforms reveals that the cooperative action of SSI and BEs results in glucans with polymodal chain length distribution similar to amylopectin. PLoS One. 2014;9(7):e102364. Epub 2014/07/12. doi: 10.1371/journal.pone.0102364 25014622

25. Slade AJ, McGuire C, Loeffler D, Mullenberg J, Skinner W, Fazio G, et al. Development of high amylose wheat through TILLING. BMC Plant Biol. 2012;12:69. Epub 2012/05/16. doi: 10.1186/1471-2229-12-69 22584013

26. Chen GX, Zhou JW, Liu YL, Lu XB, Han CX, Zhang WY, et al. Biosynthesis and Regulation of Wheat Amylose and Amylopectin from Proteomic and Phosphoproteomic Characterization of Granule-binding Proteins. Sci Rep. 2016;6:33111. doi: 10.1038/srep33111 27604546

27. Yang Y, Gao T, Xu M, Dong J, Li H, Wang P, et al. Functional Analysis of a Wheat AGPase Plastidial Small Subunit with a Truncated Transit Peptide. Molecules. 2017;22(3):386. Epub 2017/03/04. doi: 10.3390/molecules22030386 28257051

28. Yu X, Li B, Wang L, Chen X, Wang W, Wang Z, et al. Systematic Analysis of Pericarp Starch Accumulation and Degradation during Wheat Caryopsis Development. PLoS ONE. 2015;10:e0138228. doi: 10.1371/journal.pone.0138228 26394305

29. Wang Z, Li W, Qi J, Shi P, Yin Y. Starch accumulation, activities of key enzyme and gene expression in starch synthesis of wheat endosperm with different starch contents. J Food Sci Technol. 2014;51(3):419–29. Epub 2014/03/04. doi: 10.1007/s13197-011-0520-z 24587516

30. Ma C, Zhou J, Chen G, Bian Y, Lv D, Li X, et al. iTRAQ-based quantitative proteome and phosphoprotein characterization reveals the central metabolism changes involved in wheat grain development. BMC Genomics. 2014;15:1029. doi: 10.1186/1471-2164-15-1029 25427527

31. Chen G, Zhu J, Zhou J, Subburaj S, Zhang M, Han C, et al. Dynamic development of starch granules and the regulation of starch biosynthesis in Brachypodium distachyon: comparison with common wheat and Aegilops peregrina. BMC Plant Biol. 2014;14:198. doi: 10.1186/s12870-014-0198-2 25095703

32. Streb S, Zeeman SC. Replacement of the endogenous starch debranching enzymes ISA1 and ISA2 of Arabidopsis with the rice orthologs reveals a degree of functional conservation during starch synthesis. PLoS One. 2014;9(3):e92174. doi: 10.1371/journal.pone.0092174 24642810

33. Danishuddin M, Chatrath R, Singh R. Insights of interaction between small and large subunits of ADP-glucose pyrophosphorylase from bread wheat (Triticum aestivum L.). Bioinformation. 2011;6(4):144–8. doi: 10.6026/97320630006144 21572880

34. Ahuja G, Jaiswal S, Hucl P, Chibbar RN. Wheat genome specific granule-bound starch synthase I differentially influence grain starch synthesis. Carbohydr Polym. 2014;114:87–94. Epub 2014/09/30. doi: 10.1016/j.carbpol.2014.08.004 25263868.

35. Ahuja G, Jaiswal S, Hucl P, Chibbar RN. Genome-specific granule-bound starch synthase I (GBSSI) influences starch biochemical and functional characteristics in near-isogenic wheat (Triticum aestivum L.) lines. J Agric Food Chem. 2013;61(49):12129–38. Epub 2013/11/26. doi: 10.1021/jf4040767 24266496.

36. Massimiliano C, Andreas B, Susanne LJ, Shahnoor SS, Anette H, Alain B, et al. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules. BMC Plant Biol. 2012;12:223. doi: 10.1186/1471-2229-12-223 23171412

37. McMaugh SJ, Thistleton JL, Anschaw E, Luo J, Konik-Rose C, Wang H, et al. Suppression of starch synthase I expression affects the granule morphology and granule size and fine structure of starch in wheat endosperm. J Exp Bot. 2014;65(8):2189–201. Epub 2014/03/19. doi: 10.1093/jxb/eru095 24634486

38. Fujita N, Satoh R, Hayashi A, Kodama M, Itoh R, Aihara S, et al. Starch biosynthesis in rice endosperm requires the presence of either starch synthase I or IIIa. J Exp Bot. 2011;62(14):4819–31. Epub 2011/07/07. doi: 10.1093/jxb/err125 21730357

39. Fujita N, Yoshida M, Asakura N, Ohdan T, Miyao A, Hirochika H, et al. Function and characterization of starch synthase I using mutants in rice. Plant Physiol. 2006;140(3):1070–84. Epub 2006/01/31. doi: 10.1104/pp.105.071845 16443699

40. Sestili F, Palombieri S, Botticella E, Mantovani P, Bovina R, Lafiandra D. TILLING mutants of durum wheat result in a high amylose phenotype and provide information on alternative splicing mechanisms. Plant Sci. 2015;233:127–33. Epub 2015/02/26. doi: 10.1016/j.plantsci.2015.01.009 25711820.

Článek vyšel v časopise


2019 Číslo 10