A meta-analysis of crop response patterns to nitrogen limitation for improved model representation

Autoři: Verena Seufert aff001;  Gustaf Granath aff002;  Christoph Müller aff003
Působiště autorů: Liu Institute for Global Issues and Institute for Resources, Environment and Sustainability (IRES), University of British Columbia, Vancouver, Canada aff001;  Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden aff002;  Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany aff003
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0223508


The representation of carbon-nitrogen (N) interactions in global models of the natural or managed land surface remains an important knowledge gap. To improve global process-based models we require a better understanding of how N limitation affects photosynthesis and plant growth. Here we present the findings of a meta-analysis to quantitatively assess the impact of N limitation on source (photosynthate production) versus sink (photosynthate use) activity, based on 77 highly controlled experimental N availability studies on 11 crop species. Using meta-regressions, we find that it can be insufficient to represent N limitation in models merely as inhibiting carbon assimilation, because in crops complete N limitation more strongly influences leaf area expansion (-50%) than photosynthesis (-34%), while leaf starch is accumulating (+83%). Our analysis thus offers support for the hypothesis of sink limitation of photosynthesis and encourages the exploration of more sink-driven crop modelling approaches. We also show that leaf N concentration changes with N availability and that the allocation of N to Rubisco is reduced more strongly compared to other photosynthetic proteins at low N availability. Furthermore, our results suggest that different crop species show generally similar response patterns to N limitation, with the exception of leguminous crops, which respond differently. Our meta-analysis offers lessons for the improved depiction of N limitation in global terrestrial ecosystem models, as well as highlights knowledge gaps that need to be filled by future experimental studies on crop N limitation response.

Klíčová slova:

Carbon dioxide – Crops – Chlorophyll – Leaves – Photosynthesis – Starches – Ribulose-1,5-bisphosphate carboxylase oxygenase


1. Vitousek PM, Howarth RW. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry. 1991;13: 87–115.

2. LeBauer DS, Treseder KK. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology. 2008;89: 371–379. doi: 10.1890/06-2057.1 18409427

3. Luo Y, Su B, Currie WS, Dukes JS, Finzi A, Hartwig U, et al. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience. 2004;54: 731–739.

4. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, et al. Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science. 2008;320: 889–892. doi: 10.1126/science.1136674 18487183

5. Smith WK, Reed SC, Cleveland CC, Ballantyne AP, Anderegg WRL, Wieder WR, et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat Clim Change. 2015;6: 306–310. doi: 10.1038/nclimate2879

6. Thomas RQ, Zaehle S, Templer PH, Goodale CL. Global patterns of nitrogen limitation: confronting two global biogeochemical models with observations. Glob Change Biol. 2013;19: 2986–2998.

7. Thomas RQ, Brookshire EN, Gerber S. Nitrogen limitation on land: how can it occur in Earth system models? Glob Change Biol. 2015;21: 1777–1793.

8. Stehfest E, Heistermann M, Priess J a., Ojima DS, Alcamo J. Simulation of global crop production with the ecosystem model DayCent. Ecol Model. 2007;209: 203–219. doi: 10.1016/j.ecolmodel.2007.06.028

9. Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci. 2014;111: 3268–3273. doi: 10.1073/pnas.1222463110 24344314

10. Grindlay DJC. Towards an explanation of crop nitrogen demand based on the optimization of leaf nitrogen per unit leaf area. J Agric Sci. 1997;128: 377–396.

11. Lemaire G, Oosterom E, Massignam A. Crop species present different qualitative types of response to N deficiency during their vegetative growth. Field Crops Res. 2008;105: 253–265. doi: 10.1016/j.fcr.2007.10.009

12. Anten NPR, Schieving F, Medina E, Werger MJA, Schuffelen P. Optimal leaf area indices in C3 and C4 mono- and dicotyledonous species at low and high nitrogen availability. Physiol Plant. 1995;95: 541–550. doi: 10.1111/j.1399-3054.1995.tb05520.x

13. Vos J, Putten PEL, Birch CJ. Effect of nitrogen supply on leaf appearance, leaf growth, leaf nitrogen economy and photosynthetic capacity in maize (Zea mays L.). Field Crops Res. 2005;93: 64–73. doi: 10.1016/j.fcr.2004.09.013

14. Evans JR. Photosynthesis and nitrogen relationships in leaves of C 3 plants. Oecologia. 1989;78: 9–19. doi: 10.1007/BF00377192 28311896

15. Makino A, Osmond B. Effects of nitrogen nutrition on nitrogen partitioning between chloroplasts and mitochondria in pea and wheat. Plant Physiol. 1991;96: 355–362. doi: 10.1104/pp.96.2.355 16668193

16. Radin J. Control of plant growth by nitrogen: differences between cereals and broadleaf species. Plant Cell Environ. 1983;6: 65–68.

17. Chapin FS, Walter CHS, Clarkson DT. Growth response of barley and tomato to nitrogen stress and its control by absisic acid, water relations and photosynthesis. Planta. 1988;173: 352–366. doi: 10.1007/BF00401022 24226542

18. Gastal F, Lemaire G, Durand J-L, Louarn G. Quantifying crop responses to nitrogen and avenues to improve nitrogen-use efficiency. In: Sadras V, Calderini D, editors. Crop Physiology Applications for genetic improvement and agronomy. 2nd ed. London: Academic Press; 2015. pp. 161–206.

19. Lemaire G, Gastal F. Crop responses to nitrogen. Meyers R, editor. Encyclopedia of Sustainability Science and Technology. New York, NY: Springer; 2018.

20. Fatichi S, Leuzinger S, Körner C. Moving beyond photosynthesis: from carbon source to sink‐driven vegetation modeling. New Phytol. 2014;201: 1086–1095. doi: 10.1111/nph.12614 24261587

21. McGuire AD, Melillo JM, Joyce LA, Kicklighter DW, Grace AL, Moore B, et al. Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America. Glob Biogeochem Cycles. 1992;6: 101–124.

22. Sokolov AP, Kicklighter DW, Melillo JM, Felzer BS, Schlosser CA, Cronin TW. Consequences of Considering Carbon–Nitrogen Interactions on the Feedbacks between Climate and the Terrestrial Carbon Cycle. J Clim. 2008;21: 3776. doi: 10.1175/2008JCLI2038.1

23. Xu-Ri Prentice IC. Terrestrial nitrogen cycle simulation with a dynamic global vegetation model. Glob Change Biol. 2008;14: 1745–1764. doi: 10.1111/j.1365-2486.2008.01625.x

24. Jain A, Yang X, Keshgi H, McGuire AD, Post W, Kicklighter DW. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors. Glob Biogeochem Cycles. 2009;23: GB4028.

25. Deryng D, Sacks WJ, Barford CC, Ramankutty N. Simulating the effects of climate and agricultural management practices on global crop yield. Glob Biogeochem Cycles. 2011;25: GB2006.

26. Esser G, Kattge J, Sakalli A. Feedback of carbon and nitrogen cycles enhances carbon sequestration in the terrestrial biosphere. Glob Change Biol. 2011;17: 819–842. doi: 10.1111/j.1365-2486.2010.02261.x

27. Smith B, Wärlind D, Arneth A, Hickler T, Leadley P, Siltberg J, et al. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences. 2014;11: 2027–2054.

28. Bloh W, Schaphoff S, Müller C, Rolinski S, Waha K, Zaehle S. Implementing the Nitrogen cycle into the dynamic global vegetation, hydrology and crop growth model LPJmL (version 5.0). Geosci Model Dev Discuss. 2018;11: 2789–2812. doi: 10.5194/gmd-11-2789-2018

29. Zaehle S, Friend AD. Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates. Glob Biogeochem Cycles. 2010;24: 1–13. doi: 10.1029/2009GB003521

30. Zaehle S, Medlyn BE, Kauwe MG, Walker AP, Dietze MC, Hickler T, et al. Evaluation of 11 terrestrial carbon-nitrogen cycle models against observations from two temperate Free-Air CO2 Enrichment studies. New Phytol. 2014;202: 803–822. doi: 10.1111/nph.12697 24467623

31. Curtis PS. A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide. Plant Cell Environ. 1996;19: 127–137. doi: 10.1111/j.1365-3040.1996.tb00234.x

32. Curtis PS, Wang X. A meta-analysis of elevated CO 2 effects on woody plant mass, form, and physiology. Oecologia. 1998;113: 299–313. doi: 10.1007/s004420050381 28307814

33. Jablonski LM, Wang X, Curtis PS. Plant reproduction under elevated CO2 conditions: a meta-analysis of reports on 79 crop and wild species. New Phytol. 2002;156: 9–26.

34. Ainsworth EA, Davey PA, Bernacchi CJ, Dermody OC, Heaton EA, Moore DJ, et al. A meta-analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield. Glob Change Biol. 2002;8: 695–709. doi: 10.1046/j.1365-2486.2002.00498.x

35. Ainsworth EA, Long SP. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 2005;165: 351–372. doi: 10.1111/j.1469-8137.2004.01224.x 15720649

36. Lam SK, Chen D, Norton R, Armstrong R, Mosier AR. Nitrogen dynamics in grain crop and legume pasture systems under elevated atmospheric carbon dioxide concentration: A meta‐analysis. Glob Change Biol. 2012;18: 2853–2859.

37. Lu M, Zhou X, Luo Y, Yang Y, Fang C, Chen J, et al. Minor stimulation of soil carbon storage by nitrogen addition: a meta-analysis. Agric Ecosyst Environ. 2011;140: 234–244.

38. Treseder KK. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol. 2004;164: 347–355.

39. Knorr M, Frey SD, Curtis PS. Nitrogen additions and litter decomposition: a meta-analysis. Ecology. 2005;86: 3252–3257.

40. Treseder KK. Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol Lett. 2008;11: 1111–1120. doi: 10.1111/j.1461-0248.2008.01230.x 18673384

41. Lu M, Yang Y, Luo Y, Fang C, Zhou X, Chen J, et al. Responses of ecosystem nitrogen cycle to nitrogen addition: a meta‐analysis. New Phytol. 2011;189: 1040–1050. doi: 10.1111/j.1469-8137.2010.03563.x 21138438

42. Xia J, Wan S. Global response patterns of terrestrial plant species to nitrogen addition. New Phytol. 2008;179: 428–439. doi: 10.1111/j.1469-8137.2008.02488.x 19086179

43. Lee M, Manning P, Rist J, Power SA, Marsh C. A global comparison of grassland biomass responses to CO2 and nitrogen enrichment. Philos Trans R Soc Lond B Biol Sci. 2010;365: 2047–2056. doi: 10.1098/rstb.2010.0028 20513713

44. Limpens J, Granath G, Gunnarsson U, Aerts R, Bayley S, Bragazza L, et al. Climatic modifiers of the response to nitrogen deposition in peat‐forming Sphagnum mosses: a meta‐analysis. New Phytol. 2011;191: 496–507. doi: 10.1111/j.1469-8137.2011.03680.x 21434930

45. Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett. 2007;10: 1135–42. doi: 10.1111/j.1461-0248.2007.01113.x 17922835

46. Elliott J, Müller C, Deryng D, Chryssanthacopoulos J, Boote KJ, Büchner M, et al. The global gridded crop model intercomparison: data and modeling protocols for phase 1 (v1. 0). Geosci Model Dev. 2015;8: 261–277.

47. White MA, Thornton PE, Running SW, Nemani RR. Parameterization and Sensitivity Analysis of the BIOME–BGC Terrestrial Ecosystem Model: Net Primary Production Controls. Earth Interact. 2000;4: 1–85. doi: 10.1175/1087-3562(2000)004<0003:PASAOT>2.0.CO;2

48. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, et al. The worldwide leaf economics spectrum. Nature. 2004;428: 821–827. doi: 10.1038/nature02403 15103368

49. Kattge J, Diaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, et al. TRY–a global database of plant traits. Glob Change Biol. 2011;17: 2905–2935.

50. Caemmerer S, Farquhar GD. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta. 1981;153: 376–387. doi: 10.1007/BF00384257 24276943

51. Evans JR. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum-Aestivum L). Plant Physiol. 1983;72: 297–302. doi: 10.1104/pp.72.2.297 16662996

52. Brooks A, Farquhar GD. Effect of temperature on the CO 2/O 2 specificity of ribulose-1, 5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light. Planta. 1985;165: 397–406. doi: 10.1007/BF00392238 24241146

53. Ingestad T. Relative addition rate and external concentration; driving variables used in plant nutrition research. Plant Cell Environ. 1982;5: 443–453.

54. Ingestad T, Agren GI. Theories and methods on plant nutrition and growth. Physiol Plant. 1992; 177–184.

55. Tummers B, Laan J, Huyser K. DataThief III. 2008; http://datathief.org/

56. Chapin FS III, Vitousek PM, Cleve K. The nature of nutrient limitation in plant communities. Am Nat. 1986;127: 48–58.

57. Uddling J, Gelang-Alfredsson J, Piikki K, Pleijel H. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynth Res. 2007;91: 37–46. doi: 10.1007/s11120-006-9077-5 17342446

58. Hedges L, Gurevitch J, Curtis PS. The Meta-Analysis of Response Ratios in Experimental Ecology. Ecology. 1999;80: 1150. doi: 10.2307/177062

59. Gurevitch J, Mengersen K. A statistical view of synthesizing patterns of species richness along productivity gradients: devils, forests, and trees. Ecology. 2010; 2553–2560. doi: 10.1890/09-1039.1 20957948

60. Nakagawa S, Santos ESA. Methodological issues and advances in biological meta-analysis. Evol Ecol. 2012;26: 1253–1274.

61. Thompson SG, Higgins J. How should meta‐regression analyses be undertaken and interpreted? Stat Med. 2002;21: 1559–1573. doi: 10.1002/sim.1187 12111920

62. Lajeunesse MJ. Achieving synthesis with meta-analysis by combining and comparing all available studies. Ecology. 2010;91: 2561–2564. doi: 10.1890/09-1530.1 20957949

63. Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010;36: 1–48.

64. Hedges L, Tipton E, Johnson MC. Robust variance estimation in meta‐regression with dependent effect size estimates. Res Synth Methods. 2010;1: 39–65. doi: 10.1002/jrsm.5 26056092

65. Limpens J, Granath G, Aerts R, Heijmans M, Sheppard L, Bragazza L, et al. Glasshouse vs field experiments: do they yield ecologically similar results for assessing N impacts on peat mosses? New Phytol. 2012;195: 408–418. doi: 10.1111/j.1469-8137.2012.04157.x 22537052

66. Viechtbauer W. Bias and Efficiency of Meta-Analytic Variance Estimators in the Random-Effects Model. J Educ Behav Stat. 2005;30: 261–293. doi: 10.3102/10769986030003261

67. Khamis S, Lamaze T. Maximal biomass production can occur in corn (Zea mays) in the absence of NO3 accumulation in either leaves or roots. Physiol Plant. 1990;78: 388–394. doi: 10.1111/j.1399-3054.1990.tb09053.x

68. Marschner H, Kirkby EA, Cakmak I. Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. J Exp Bot. 1996;47: 1255–1263. doi: 10.1093/jxb/47.Special_Issue.1255 21245257

69. Paul MJ, Driscoll SP. Sugar repression of photosynthesis: the role of carbohydrates in signalling nitrogen deficiency through source: sink imbalance. Plant Cell Environ. 1997;20: 110–116.

70. Paul MJ, Foyer CH. Sink regulation of photosynthesis. J Exp Bot. 2001;52: 1383. doi: 10.1093/jexbot/52.360.1383 11457898

71. Chapin FS III. Integrated responses of plants to stress. Bioscience. 1991;41: 29–36.

72. Lambers H, Chapin FS III, Pons TL. Plant Physiological Ecology. New York: Springer; 2008.

73. McDonald AJS, Lohammar T, Ericsson A. Growth response to step-decrease in nutrient availability in small birch (Betula pendula Roth). Plant Cell Environ. 1986;9: 427–432.

74. Gastal F, Belanger G. The effects of nitrogen fertilization and the growing season on photosynthesis of field-grown tall fescue (Festuca arundinacea Schreb.) canopies. Ann Bot. 1993;72: 401–408.

75. White AC, Rogers A, Rees M, Osborne CP. How can we make plants grow faster? A source–sink perspective on growth rate. J Exp Bot. 2016;67: 31–45. doi: 10.1093/jxb/erv447 26466662

76. Koch GW, Schulze E, Percival F, Mooney HA, Chu C. The nitrogen balance of Raphanus sativus x raphanistrum plants. II. Growth, nitrogen redistribution and photosynthesis under NO3− deprivation. Plant Cell Environ. 1988;11: 755–767.

77. Hocking PJ, Meyer CP. Effects of CO, enrichment and nitrogen stress on growth and partitioning of dry matter and nitrogen in wheat and maize. Aust J Plant Physiol. 1991;18: 339–356.

78. Pugnaire F, Chapin FS. Environmental and physiological factors governing nutrient resorption efficiency in barley. Oecologia. 1992;90: 120–126. doi: 10.1007/BF00317817 28312279

79. Sims DA, Seemann JR, Luo Y. The significance of differences in the mechanisms of photosynthetic acclimation to light, nitrogen and CO2 for return on investment in leaves. Funct Ecol. 1998;12: 185–194. doi: 10.1046/j.1365-2435.1998.00194.x

80. Evans JR. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia. 1989;78: 9–19. doi: 10.1007/BF00377192 28311896

81. Evans JR, Terashima I. Photosynthetic Characteristics of Spinach Leaves Grown with Different Nitrogen Treatments. Plant Cell Physiol. 1988;29: 157–165.

82. Millard P. The accumulation and storage of nitrogen by herbaceous plants. Plant Cell Environ. 1988;11: 1–8.

83. Stitt M, Schulze D. Does Rubisco control the rate of photosynthesis and plant growth? An exercise in molecular ecophysiology. Plant Cell Environ. 1994;17: 465–487.

84. Makino A, Sakashita H, Hidema J, Mae T, Ojima K, Osmond B. Distinctive responses of ribulose-1, 5-bisphosphate carboxylase and carbonic anhydrase in wheat leaves to nitrogen nutrition and their possible relationships to CO2-transfer resistance. Plant Physiol. 1992;100: 1737. doi: 10.1104/pp.100.4.1737 16653191

85. Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, et al. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature. 2006;440: 922–5. doi: 10.1038/nature04486 16612381

86. Stitt M, Krapp A. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell Environ. 1999;22: 583–621. doi: 10.1046/j.1365-3040.1999.00386.x

87. Wong SC. Elevated atmospheric partial pressure of CO2 and plant growth. I. Interactions of nitrogen nutrition and photosynthetic capacity in C3 and C4 plants. Oecologia. 1979;44: 68–74. doi: 10.1007/BF00346400 28310466

88. Ziska LH, Weerakoon W, Namuco OS, Pamplona R. The influence of nitrogen on the elevated CO2 response in field-grown rice. Funct Plant Biol. 1996;23: 45–52.

89. Riviere-Rolland H, Contard P, Betsche T. Adaptation of pea to elevated atmospheric CO2: Rubisco, phosphoenolpyruvate carboxylase and chloroplast phosphate translocator at different levels of nitrogen and phosphorus nutrition. Plant Cell Environ. 1996;19: 109–117. doi: 10.1111/j.1365-3040.1996.tb00232.x

90. Thornton PE, Lamarque JF, Rosenbloom NA, Mahowald NM. Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Glob Biogeochem Cycles. 2007;21: 1–15. doi: 10.1029/2006GB002868

91. Friend A, Stevens A, Knox R, Cannell M. A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3. 0). Ecol Model. 1997;95: 249–287.

92. Ghimire B, Riley WJ, Koven CD, Kattge J, Rogers A, Reich PB, et al. A global trait-based approach to estimate leaf nitrogen functional allocation from observations: Ecol Appl. 2017;27: 1421–1434. doi: 10.1002/eap.1542 28370740

93. Pelleschi S, Rocher JP, Prioul JL. Effect of water restriction on carbohydrate metabolism and photosynthesis in mature maize leaves. Plant Cell Environ. 1997;20: 493–503.

94. Roitsch T. Source-sink regulation by sugar and stress. Curr Opin Plant Biol. 1999;2: 198–206. doi: 10.1016/S1369-5266(99)80036-3 10375568

95. Andersen CP. Source-sink balance and carbon allocation below ground in plants exposed to ozone. New Phytol. 2003;157: 213–228.

96. Arp WJ. Effects of source-sink relations on photosynthetic acclimation to elevated CO2. Plant Cell Environ. 1991;14: 869–875. doi: 10.1111/j.1365-3040.1991.tb01450.x

97. Luxmoore RJ. A source-sink framework for coupling water, carbon, and nutrient dynamics of vegetation. Tree Physiol. 1991;9: 267–280. doi: 10.1093/treephys/9.1-2.267 14972869

98. Sun Y, Gu L, Dickinson RE, Norby RJ, Pallardy SG, Hoffman FM. Impact of mesophyll diffusion on estimated global land CO2 fertilization. Proc Natl Acad Sci. 2014;111: 15774–15779. doi: 10.1073/pnas.1418075111 25313079

99. Pugh TAM, Müller C, Arneth A, Haverd V, Smith B. Key knowledge and data gaps in modelling the influence of CO2 concentration on the terrestrial carbon sink. J Plant Physiol. 2016;203: 3–15. doi: 10.1016/j.jplph.2016.05.001 27233774

100. Rogers A, Medlyn BE, Dukes JS, Bonan G, Caemmerer S, Dietze MC, et al. A roadmap for improving the representation of photosynthesis in Earth system models. New Phytol. 2017;213: 22–42. doi: 10.1111/nph.14283 27891647

101. Macduff JH, Jarvis SC, Larsson CM, Oscarson P. Plant growth in relation to the supply and uptake of NO3: a comparison between relative addition rate and external concentration as driving variables. J Exp Bot. 1993;44: 1475.

102. Leakey AD, Bishop KA, Ainsworth EA. A multi-biome gap in understanding of crop and ecosystem responses to elevated CO2. Curr Opin Plant Biol. 2012;15: 228–236. doi: 10.1016/j.pbi.2012.01.009 22284851

Článek vyšel v časopise


2019 Číslo 10
Nejčtenější tento týden