#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Influence of mydriasis on optical coherence tomography angiography imaging in patients with age-related macular degeneration


Autoři: Viktoria C. Brücher aff001;  Jens J. Storp aff001;  Laura Kerschke aff002;  Pieter Nelis aff001;  Nicole Eter aff001;  Maged Alnawaiseh aff001
Působiště autorů: Department of Ophthalmology, University of Muenster Medical Centre, Muenster, North Rhine-Westphalia, Germany aff001;  Department of Biometry and Clinical Research, University of Muenster Medical Centre, Muenster, North Rhine-Westphalia, Germany aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0223452

Souhrn

Purpose

To evaluate the effect of topical mydriatic eye drops on optical coherence tomography angiography (OCTA) parameters in patients with age-related macular degeneration (AMD).

Methods

27 eyes of 27 patients suffering from AMD were included in this cross-sectional study. Patients with ≥-4.5 diopters spherical equivalent, corneal opacities or dense cataract preventing high-quality imaging were excluded. Whole-en-face scans of the superficial capillary plexus (SCP) and deep capillary plexus (DCP) in the central 3x3mm foveal region as well as whole-en-face and peripapillary scans of the radial peripapillary capillaries (RPC) were generated using OCTA (AngioVue®, Optovue). Imaging was first conducted with patients’ eyes in miosis, then in mydriasis after instillation of a dilating eye drop (0.5% tropicamide, 2.5% phenylephrine-HCl). Main outcome measures were flow density (FD), foveal avascular zone (FAZ), signal strength index (SSI) and motion artifact score (MAS).

Results

Our results reveal that in AMD patients there is no significant difference between FD measurements taken in miosis and those taken in mydriasis around the SCP (p = 0.198), DCP (p = 0.458), RPC whole-en-face (p = 0.275) and RPC peripapillary (p = 0.503). Measurements taken in these two states appear to be equivalent for assessment of FD (90%CI within ± 0.05). No significant difference was found either in the area of the FAZ (p = 0.338) or in the SSI (p = 0.371) before and after the instillation of tropicamide/phenylephrine. MAS was significantly lower after the application of mydriatic eye drops (p = 0.003).

Conclusions

Our findings reveal that neither measurements of FD nor measurements of the FAZ area changed significantly in AMD patients after the application of tropicamide/phenylephrine. Since MAS improved significantly in dilation, mydriatic examination is recommended. Nevertheless, a comparison of OCTA metrics from images taken with different pupil states (miosis versus mydriasis) is valid for clinical trials.

Klíčová slova:

Angiography – Eyes – Image processing – Macular degeneration – Retinal vessels – Tomography – Pupil – Optic nerve


Zdroje

1. Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res. 2018;64:1–55. doi: 10.1016/j.preteyeres.2017.11.003 29229445

2. Kashani AH, Chen CL, Gahm JK, Zheng F, Richter GM, Rosenfeld PJ, et al. Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications. Prog Retin Eye Res. 2017;60:66–100. doi: 10.1016/j.preteyeres.2017.07.002 28760677

3. Ma J, Desai R, Nesper P, Gill M, Fawzi A, Skondra D. Optical Coherence Tomographic Angiography Imaging in Age-Related Macular Degeneration. Ophthalmol Eye Dis. 2017 Mar 20. doi: 10.1177/1179172116686075 28579843

4. Perrott-Reynolds R, Cann R, Cronbach N, Neo YN, Ho V, McNally O, et al. The diagnostic accuracy of OCT angiography in naive and treated neovascular age-related macular degeneration: a review. Eye (Lond). 2019;33:274–282. doi: 10.1038/s41433-018-0229-6 30382236

5. Alnawaiseh M, Brand C, Bormann E, Sauerland C, Eter N. Quantification of macular perfusion using optical coherence tomography angiography: repeatability and impact of an eye-tracking system. BMC Ophthalmol. 2018;18: 123. doi: 10.1186/s12886-018-0789-z 29793449

6. Lee MW, Kim KM, Lim HB, Jo YJ, Kim JY. Repeatability of vessel density measurements using optical coherence tomography angiography in retinal diseases. Br J Ophthalmol. 2018 Jul 4. pii: bjophthalmol-2018-312516. doi: 10.1136/bjophthalmol-2018-312516 29973363

7. Manalastas PIC, Zangwill LM, Saunders LJ, Mansouri K, Belghith A, Suh MH, et al. Reproducibility of Optical Coherence Tomography Angiography Macular and Optic Nerve Head Vascular Density in Glaucoma and Healthy Eyes. J Glaucoma. 2017;26(10): 851–859. doi: 10.1097/IJG.0000000000000768 28858159

8. Lei J, Durbin MK, Shi Y, Uji A, Balasubramanian S, Baghdasaryan E, et al. Repeatability and Reproducibility of Superficial Macular Retinal Vessel Density Measurements Using Optical Coherence Tomography Angiography En Face Images. JAMA Ophthalmol. 2017;135(10): 1092–1098. doi: 10.1001/jamaophthalmol.2017.3431 28910435

9. Al-Sheikh M, Tepelus TC, Nazikyan T, Sadda SR. Repeatability of automated vessel density measurements using optical coherence tomography angiography. Br J Ophthalmol. 2017;101(4): 449–452. doi: 10.1136/bjophthalmol-2016-308764 27450146

10. Yanik Odabaş Ö, Demirel S, Özmert E, Batioğlu F. Repeatability of automated vessel density and superficial and deep foveal avascular zone area measurements using optical coherence tomography angiography: Diurnal Findings. Retina. 2018;38(6): 1238–1245. doi: 10.1097/IAE.0000000000001671 28613219

11. Alnawaiseh M, Schubert F, Heiduschka P, Eter N. Optical coherence tomography angiography in patients with retinitis pigmentosa. Retina. 2019;39(1): 210–217. doi: 10.1097/IAE.000000000000190 30570620

12. Lauermann JL, Treder M, Heiduschka P, Clemens CR, Eter N, Alten F. Impact of eye-tracking technology on OCT-angiography imaging quality in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2017;255(8): 1535–1542. doi: 10.1007/s00417-017-3684-z 28474129

13. Ghasemi Falavarjani K, Al-Sheikh M, Akil H, Sadda SR. Image artefacts in swept-source optical coherence tomography angiography. Br J Ophthalmol. 2017;101(5): 564–568. doi: 10.1136/bjophthalmol-2016-309104 27439739

14. Spaide RF, Fujimoto JG, Waheed NK. Image Artifacts in Optical Coherence Tomography Angiography. Retina. 2015;35(11): 2163–2180. doi: 10.1097/IAE.0000000000000765 26428607

15. Ghasemi Falavarjani K, Al-Sheikh M, Darvizeh F, Sadun AA, Sadda SR. Retinal vessel calibre measurements by optical coherence tomography angiography. Br J Ophthalmol. 2017;101(7): 989–992. doi: 10.1136/bjophthalmol-2016-309678 27852583

16. Camino A, Zhang M, Gao SS, Hwang TS, Sharma U, Wilson DJ, et al. Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology. Biomed Opt Express. 2016;7(10): 3905–3915. doi: 10.1364/BOE.7.003905 27867702

17. Alnawaiseh M, Brand C, Lauermann JL, Eter N. Flow density measurements using optical coherence tomography angiography: Impact of age and gender. Ophthalmologe 2018;115(8): 659–662. doi: 10.1007/s00347-017-0539-2 28726070

18. Iafe NA, Phasukkijwatana N, Chen X, Sarraf D. Retinal Capillary Density and Foveal Avascular Zone Area Are Age-Dependent: Quantitative Analysis Using Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci. 2016;57(13): 5780–5787. doi: 10.1167/iovs.16-20045 27792812

19. Alten F, Heiduschka P, Clemens CR, Eter N. Exploring choriocapillaris under reticular pseudodrusen using OCT-Angiography. Graefes Arch Clin Exp Ophthalmol. 2016;254(11): 2165–2173. doi: 10.1007/s00417-016-3375-1 27193430

20. Nassisi M, Baghdasaryan E, Tepelus T, Asanad S, Borrelli E, Sadda SR. Topographic distribution of choriocapillaris flow deficits in healthy eyes. PLoS One. 2018 Nov 15. doi: 10.1371/journal.pone.0207638 30440050

21. Spaide RF. Choriocapillaris Flow Features Follow a Power Law Distribution: Implications for Characterization and Mechanisms of Disease Progression. Am J Ophthalmol. 2016;170: 58–67. doi: 10.1016/j.ajo.2016.07.023 27496785

22. Sacconi R, Borrelli E, Corbelli E, Capone L, Rabiolo A, Carnevali A, et al. Quantitative changes in the ageing choriocapillaris as measured by swept source optical coherence tomography angiography. Br J Ophthalmol. 2018 Oct 25. pii: bjophthalmol-2018-313004. doi: 10.1136/bjophthalmol-2018-313004 30361273

23. Milani P, Montesano G, Rossetti L, Bergamini F, Pece A. Vessel density, retinal thickness, and choriocapillaris vascular flow in myopic eyes on OCT angiography. Graefes Arch Clin Exp Ophthalmol. 2018;256(8): 1419–1427. doi: 10.1007/s00417-018-4012-y 29876731

24. Sung MS, Heo H, Park SW. Microstructure of Parapapillary Atrophy Is Associated With Parapapillary Microvasculature in Myopic Eyes. Am J Ophthalmol. 2018;192: 157–168. doi: 10.1016/j.ajo.2018.05.022 29859144

25. Lee MW, Kim KM, Lim HB, Jo YJ, Kim JY. Repeatability of vessel density measurements using optical coherence tomography angiography in retinal diseases. Br J Ophthalmol. 2018 Jul 4. pii: bjophthalmol-2018-312516 doi: 10.1136/bjophthalmol-2018-312516 29973363

26. Alnawaiseh M, Ertmer C, Seidel L, Arnemann PH, Lahme L, Kampmeier TG, et al. Feasibility of optical coherence tomography angiography to assess changes in retinal microcirculation in ovine haemorrhagic shock. Crit Care. 2018;22(1): 138. doi: 10.1186/s13054-018-2056-3 29843760

27. Holló G. Valsalva Maneuver and Peripapillary OCT Angiography Vessel Density. J Glaucoma. 2018 Jul. doi: 10.1097/IJG.0000000000000983 29750713

28. Mansouri K, Rao HL, Hoskens K, D'Alessandro E, Flores-Reyes EM, Mermoud A, et al. Diurnal Variations of Peripapillary and Macular Vessel Density in Glaucomatous Eyes Using Optical Coherence Tomography Angiography. J Glaucoma. 2018;27(4): 336–341. doi: 10.1097/IJG.0000000000000914 29462016

29. Chua J, Chin CWL, Hong J, Chee ML, Le TT, Ting DSW, et al. Impact of hypertension on retinal capillary microvasculature using optical coherence tomographic angiography. J Hypertens. 2019;37(3): 572–580. doi: 10.1097/HJH.0000000000001916 30113530

30. Rotsos T, Andreanos K, Blounas S, Brouzas D, Ladas DS, Ladas ID. Multimodal imaging of hypertensive chorioretinopathy by swept-source optical coherence tomography and optical coherence tomography angiography: Case report. Medicine (Baltimore). 2017 Sep. doi: 10.1097/MD.0000000000008110 28953634

31. Roemer S, Bergin C, Kaeser PF, Ambresin A. Assessment of Macular Vasculature of Children with Sickle Cell Disease Compared to that of Healthy Controls using Optical Coherence Tomography Angiography. Retina. 2018 Oct 16. doi: 10.1097/IAE.0000000000002321 30334922

32. Cheng J, Yu J, Jiang C, Sun X. Phenylephrine Affects Peripapillary Retinal Vasculature-an Optic Coherence Tomography Angiography Study. Front Physiol. 2017;8: 996. doi: 10.3389/fphys.2017.00996 29255424

33. Age-Related Eye Disease Study Research Group. The Age-Related Eye Disease Study system for classifying age-related macular degeneration from stereoscopic color fundus photographs: the Age-Related Eye Disease Study Report Number 6. Am J Ophthalmol. 2001;132(5): 668–81. doi: 10.1016/s0002-9394(01)01218-1 11704028

34. Age-Related Eye Disease Study Research Group. The Age-Related Eye Disease Study (AREDS): design implications. AREDS report no. 1. Control Clin Trials. 1999;20(6): 573–600. 10588299

35. Alnawaiseh M, Lahme L, Treder M, Rosentreter A, Eter N. Short-term effects of exercise on optic nerve and macular perfusion measured by optical coherence tomography angiography. Retina. 2017;37(9): 1642–1646. doi: 10.1097/IAE.0000000000001419 27941530

36. Schuirmann DJ. A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailability. J Pharmacokinet Biopharm. 1987;15(6): 657–680. 3450848

37. Massa GC, Vidotti VG, Cremasco F, Lupinacci AP, Costa VP. Influence of pupil dilation on retinal nerve fibre layer measurements with spectral domain OCT. Eye (Lond). 2010;24(9): 1498–1502. doi: 10.1038/eye.2010.72 20508653

38. Tanga L, Roberti G, Oddone F, Quaranta L, Ferrazza M, Berardo F, et al. Evaluating the effect of pupil dilation on spectral-domain optical coherence tomography measurements and their quality score. BMC Ophthalmol. 2015;15: 175. doi: 10.1186/s12886-015-0168-y 26654127

39. Smith M, Frost A, Graham CM, Shaw S. Effect of pupillary dilatation on glaucoma assessments using optical coherence tomography. Br J Ophthalmol. 2007;91(12): 1686–1690. doi: 10.1136/bjo.2006.113134 17556429

40. Zafar S, Gurses-Ozden R, Vessani R, Makornwattana M, Liebmann JM, Tello C, et al. Effect of pupillary dilation on retinal nerve fiber layer thickness measurements using optical coherence tomography. J Glaucoma. 2004;13(1):34–37. 14704541

41. Hsu SY, Tsai RK. Analysis of retinal nerve fiber layer and macular thickness measurements in healthy Taiwanese individuals using optical coherence tomography (Stratus OCT). J Glaucoma. 2008;17(1): 30–35. doi: 10.1097/IJG.0b013e31811243b4 18303381

42. Cheng CS, Natividad MG, Earnest A, Yong V, Lim BA, Wong HT, et al. Comparison of the influence of cataract and pupil size on retinal nerve fibre layer thickness measurements with time-domain and spectral-domain optical coherence tomography. Clin Exp Ophthalmol. 2011;39(3): 215–221. doi: 10.1111/j.1442-9071.2010.02460.x 21070544

43. Garas A, Vargha P, Holló G. Reproducibility of retinal nerve fiber layer and macular thickness measurement with the RTVue-100 optical coherence tomograph. Ophthalmology. 2010;117(4):738–746. doi: 10.1016/j.ophtha.2009.08.039 20079538

44. Savini G, Carbonelli M, Parisi V, Barboni P. Effect of pupil dilation on retinal nerve fibre layer thickness measurements and their repeatability with Cirrus HD-OCT. Eye (Lond). 2010;24(9): 1503–1508. doi: 10.1038/eye.2010.66 20489736

45. Mwanza JC, Sayyad FE, Banitt MR, Budenz DL. Effect of pupil dilation on macular choroidal thickness measured with spectral domain optical coherence tomography in normal and glaucomatous eyes. Int Ophthalmol. 2013;33(4): 335–341. doi: 10.1007/s10792-012-9689-z 23277206

46. Savini G, Zanini M, Barboni P. Influence of pupil size and cataract on retinal nerve fiber layer thickness measurements by Stratus OCT. J Glaucoma. 2006;15(4): 336–340. doi: 10.1097/01.ijg.0000212244.64584.c2 16865012

47. Polak K, Dorner G, Kiss B, Polska E, Findl O, Rainer G, et al. Evaluation of the Zeiss retinal vessel analyser. Br J Ophthalmol. 2000;84(11): 1285–1290. doi: 10.1136/bjo.84.11.1285 11049956

48. Wang Q, Chan S, Yang JY, You B, Wang YX, Jonas JB, et al. Vascular Density in Retina and Choriocapillaris as Measured by Optical Coherence Tomography Angiography. Am J Ophthalmol. 2016;168: 95–109. doi: 10.1016/j.ajo.2016.05.005 27183862

49. Wang X, Zheng Y, Kong X, Zhu L, Sun X. The Characteristics of Peripapillary Retinal Perfusion by Optical Coherence Tomography Angiography in Tessellated Fundus Eyes. PLoS One. 2016 Jul 27. doi: 10.1371/journal.pone.0159911 27463970

50. Yang Y, Wang J, Jiang H, Yang X, Feng L, Hu L, et al. Retinal Microvasculature Alteration in High Myopia. Invest Ophthalmol Vis Sci. 2016;57(14): 6020–6030. doi: 10.1167/iovs.16-19542 27820633

51. Al-Sheikh M, Ghasemi Falavarjani K, Akil H, Sadda SR. Impact of image quality on OCT angiography based quantitative measurements. Int J Retina Vitreous. 2017;3: 13. doi: 10.1186/s40942-017-0068-9 28515959

52. Lauermann JL, Woetzel AK, Treder M, Alnawaiseh M, Clemens CR, Eter N, et al. Prevalences of segmentation errors and motion artifacts in OCT-angiography differ among retinal diseases. Graefes Arch Clin Exp Ophthalmol. 2018;256(10): 1807–1816. doi: 10.1007/s00417-018-4053-2 29982897

53. Borrelli E, Shi Y, Uji A, Balasubramanian S, Nassisi M, Sarraf D, et al. Topographic Analysis of the Choriocapillaris in Intermediate Age-related Macular Degeneration. Am J Ophthalmol. 2018;196: 34–43. doi: 10.1016/j.ajo.2018.08.014 30118688

54. Nassisi M, Baghdasaryan E, Borrelli E, Ip M, Sadda SR. Choriocapillaris flow impairment surrounding geographic atrophy correlates with disease progression. PLoS One. 2019;14(2):e0212563. doi: 10.1371/journal.pone.0212563 30794627

55. Nassisi M, Shi Y, Fan W, Borrelli E, Uji A, Ip MS, et al. Choriocapillaris impairment around the atrophic lesions in patients with geographic atrophy: a swept-source optical coherence tomography angiography study. Br J Ophthalmol. 2019;103(7): 911–917. doi: 10.1136/bjophthalmol-2018-312643 30131381

56. Hwang TS, Gao SS, Liu L, Lauer AK, Bailey ST, Flaxel CJ, et al. Automated Quantification of Capillary Nonperfusion Using Optical Coherence Tomography Angiography in Diabetic Retinopathy. JAMA Ophthalmol. 2016;134(4): 367–73. doi: 10.1001/jamaophthalmol.2015.5658 26795548

57. Rosen RB, Andrade Romo JS, Krawitz BD, Mo S, Fawzi AA, Linderman RE, et al. Earliest Evidence of Preclinical Diabetic Retinopathy Revealed Using Optical Coherence Tomography Angiography Perfused Capillary Density. Am J Ophthalmol. 2019.pii: S0002-9394(19)30025-X.


Článek vyšel v časopise

PLOS One


2019 Číslo 10
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

KOST
Koncepce osteologické péče pro gynekology a praktické lékaře
nový kurz
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Svět praktické medicíny 5/2023 (znalostní test z časopisu)

Imunopatologie? … a co my s tím???
Autoři: doc. MUDr. Helena Lahoda Brodská, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#