Ultra-deep sequencing reveals pre-mRNA splicing as a sequence driven high-fidelity process

Autoři: Derrick J. Reynolds aff001;  Klemens J. Hertel aff001
Působiště autorů: Department of Microbiology and Molecular Genetics, University of California, Irvine, California, United States of America aff001
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0223132


Alternative splicing diversifies mRNA transcripts in human cells. While the spliceosome pairs exons with a high degree of accuracy, the rates of rare aberrant and non-canonical pre-mRNA splicing have not been evaluated at the nucleotide level to determine the quantity and identity of these events across splice junctions. Using ultra-deep sequencing the frequency of aberrant and non-canonical splicing events for three splice junctions flanking exon 7 of SMN1 were determined at single nucleotide resolution. After correction for background noise introduced by PCR amplification and sequencing steps, pre-mRNA splicing was shown to maintain a low overall rate of aberrant and non-canonically spliced events. Several previously unannotated splicing events across 3 exon|intron junctions in SMN1 were identified. Mutations within SMN exon 7 were shown to affect splicing fidelity by modulating RNA secondary structures, by altering the binding site of regulatory proteins and by changing the 5’ splice site strength. Mutations also create a truncated SMN1 exon 7 through the introduction of a de novo non-canonical 5’ splice site. The results from the ultra-deep sequencing approach highlight the impressive fidelity of pre-mRNA splicing and demonstrate that the immediate sequence context around splice sites is the main driving force behind non-canonical splice site pairing.

Klíčová slova:

Introns – Messenger RNA – Mutation – Nucleotide sequencing – RNA sequencing – Sequence analysis – RNA splicing – Site selection


1. Wahl MC, Will CL, Lührmann R. The Spliceosome: Design Principles of a Dynamic RNP Machine. Cell. 2009;136: 701–718. doi: 10.1016/j.cell.2009.02.009 19239890

2. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40: 1413–5. doi: 10.1038/ng.259 18978789

3. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, et al. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;456: 470–476. doi: 10.1038/nature07509 18978772

4. Chen L, Bush SJ, Tovar-Corona JM, Castillo-Morales A, Urrutia AO. Correcting for Differential Transcript Coverage Reveals a Strong Relationship between Alternative Splicing and Organism Complexity. Mol Biol Evol. 2014;31: 1402–1413. doi: 10.1093/molbev/msu083 24682283

5. Kornblihtt AR, Schor IE, Alló M, Dujardin G, Petrillo E, Muñoz MJ. Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nat Rev Mol Cell Biol. 2013;14: 153–165. doi: 10.1038/nrm3525 23385723

6. Barbosa-Morais NL, Irimia M, Pan Q, Xiong HY, Gueroussov S, Lee LJ, et al. The evolutionary landscape of alternative splicing in vertebrate species. Science. 2012;338: 1587–93. doi: 10.1126/science.1230612 23258890

7. Buratti E, Chivers M, Královičová J, Romano M, Baralle M, Krainer AR, et al. Aberrant 5’ splice sites in human disease genes: Mutation pattern, nucleotide structure and comparison of computational tools that predict their utilization. Nucleic Acids Res. 2007;35: 4250–4263. doi: 10.1093/nar/gkm402 17576681

8. Dou Y, Fox-Walsh KL, Baldi PF, Hertel KJ. Genomic splice-site analysis reveals frequent alternative splicing close to the dominant splice site. RNA. 2006;12: 2047–2056. doi: 10.1261/rna.151106 17053087

9. Tsai K-W, Chan W-C, Hsu C-N, Lin W-C. Sequence features involved in the mechanism of 3’ splice junction wobbling. BMC Mol Biol. 2010;11: 34. doi: 10.1186/1471-2199-11-34 20459675

10. Koodathingal P, Novak T, Piccirilli JA, Staley JP. The DEAH Box ATPases Prp16 and Prp43 Cooperate to Proofread 5′ Splice Site Cleavage during Pre-mRNA Splicing. Mol Cell. 2010;39: 385–395. doi: 10.1016/j.molcel.2010.07.014 20705241

11. Mayas RM, Maita H, Staley JP. Exon ligation is proofread by the DExD/H-box ATPase Prp22p. Nat Struct Mol Biol. 2006;13: 482–490. doi: 10.1038/nsmb1093 16680161

12. Semlow DR, Staley JP. Staying on message: ensuring fidelity in pre-mRNA splicing. Trends Biochem Sci. 2012;37: 263–273. doi: 10.1016/j.tibs.2012.04.001 22564363

13. Semlow DR, Blanco MR, Walter NG, Staley JP. Spliceosomal DEAH-Box ATPases Remodel Pre-mRNA to Activate Alternative Splice Sites. Cell. 2016;164: 985–998. doi: 10.1016/j.cell.2016.01.025 26919433

14. Nilsen TW, Graveley BR. Expansion of the eukaryotic proteome by alternative splicing. Nature. 2010;463: 457–463. doi: 10.1038/nature08909 20110989

15. Maquat LE. Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat Rev Mol Cell Biol. 2004;5: 89–99. doi: 10.1038/nrm1310 15040442

16. Kurosaki T, Maquat LE. Nonsense-mediated mRNA decay in humans at a glance. J Cell Sci. 2016;129: 461–467. doi: 10.1242/jcs.181008 26787741

17. Szádeczky-Kardoss I, Csorba T, Auber A, Schamberger A, Nyikó T, Taller J, et al. The nonstop decay and the RNA silencing systems operate cooperatively in plants. Nucleic Acids Res. 2018;46: 4632–4648. doi: 10.1093/nar/gky279 29672715

18. Doma MK, Parker R. Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature. 2006;440: 561–564. doi: 10.1038/nature04530 16554824

19. Inada T. Quality control systems for aberrant mRNAs induced by aberrant translation elongation and termination. Biochim Biophys Acta—Gene Regul Mech. 2013;1829: 634–642. doi: 10.1016/j.bbagrm.2013.02.004 23416749

20. Scotti MM, Swanson MS. RNA mis-splicing in disease. Nat Rev Genet. 2016;17: 19–32. doi: 10.1038/nrg.2015.3 26593421

21. Daguenet E, Dujardin G, Valcarcel J. The pathogenicity of splicing defects: mechanistic insights into pre-mRNA processing inform novel therapeutic approaches. EMBO Rep. 2015;16: 1640–1655. doi: 10.15252/embr.201541116 26566663

22. Fox-Walsh KL, Hertel KJ. Splice-site pairing is an intrinsically high fidelity process. Proc Natl Acad Sci. 2009;106: 1766–1771. doi: 10.1073/pnas.0813128106 19179398

23. Mellert K, Uhl M, Högel J, Lamla M, Kemkemer R, Kaufmann D. Aberrant Single Exon Skipping is not Altered by Age in Exons of NF1, RABAC1, AATF or PCGF2 in Human Blood Cells and Fibroblasts. Genes (Basel). 2011;2: 562–577. doi: 10.3390/genes2030562 24710210

24. Pickrell JK, Pai AA, Gilad Y, Pritchard JK. Noisy Splicing Drives mRNA Isoform Diversity in Human Cells. PLoS Genet. 2010;6: e1001236. doi: 10.1371/journal.pgen.1001236 21151575

25. Mueller WF, Larsen LSZ, Garibaldi A, Hatfield GW, Hertel KJ. The silent sway of splicing by synonymous substitutions. J Biol Chem. 2015;290: 27700–27711. doi: 10.1074/jbc.M115.684035 26424794

26. Lorson CL, Hahnen E, Androphy EJ, Wirth B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci. 1999;96: 6307–6311. doi: 10.1073/pnas.96.11.6307 10339583

27. Lim SR, Hertel KJ. Modulation of Survival Motor Neuron Pre-mRNA Splicing by Inhibition of Alternative 3’ Splice Site Pairing. J Biol Chem. 2001;276: 45476–45483. doi: 10.1074/jbc.M107632200 11584013

28. Singh NN, Singh RN, Androphy EJ. Modulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genes. Nucleic Acids Res. 2006;35: 371–389. doi: 10.1093/nar/gkl1050 17170000

29. Fairbrother WG, Yeh R-F, Sharp PA, Burge CB. Predictive identification of exonic splicing enhancers in human genes. Science. 2002;297: 1007–13. doi: 10.1126/science.1073774 12114529

30. Nesser NK, Peterson DO, Hawley DK. RNA polymerase II subunit Rpb9 is important for transcriptional fidelity in vivo. Proc Natl Acad Sci. 2006;103: 3268–3273. doi: 10.1073/pnas.0511330103 16492753

31. Jeon C, Agarwal K. Fidelity of RNA polymerase II transcription controlled by elongation factor TFIIS. Proc Natl Acad Sci. 1996;93: 13677–13682. doi: 10.1073/pnas.93.24.13677 8942993

32. Imashimizu M, Oshima T, Lubkowska L, Kashlev M. Direct assessment of transcription fidelity by high-resolution RNA sequencing. Nucleic Acids Res. 2013;41: 9090–9104. doi: 10.1093/nar/gkt698 23925128

33. Horowitz DS. The mechanism of the second step of pre-mRNA splicing. Wiley Interdiscip Rev RNA. 2012;3: 331–350. doi: 10.1002/wrna.112 22012849

34. Yeo G, Burge CB. Maximum Entropy Modeling of Short Sequence Motifs with Applications to RNA Splicing Signals. J Comput Biol. 2004;11: 377–394. doi: 10.1089/1066527041410418 15285897

35. Ustianenko D, Weyn-Vanhentenryck SM, Zhang C. Microexons: discovery, regulation, and function. Wiley Interdiscip Rev RNA. 2017;8: e1418. doi: 10.1002/wrna.1418 28188674

36. Yoshimoto S, Harahap NIF, Hamamura Y, Ar Rochmah M, Shima A, Morisada N, et al. Alternative splicing of a cryptic exon embedded in intron 6 of SMN1 and SMN2. Hum Genome Var. 2016;3: 16040. doi: 10.1038/hgv.2016.40 27917293

37. Pedrotti S, Bielli P, Paronetto MP, Ciccosanti F, Fimia GM, Stamm S, et al. The splicing regulator Sam68 binds to a novel exonic splicing silencer and functions in SMN2 alternative splicing in spinal muscular atrophy. EMBO J. 2010;29: 1235–47. doi: 10.1038/emboj.2010.19 20186123

38. Agarwal R, Schwer B, Shuman S. Structure-function analysis and genetic interactions of the Luc7 subunit of the Saccharomyces cerevisiae U1 snRNP. RNA. 2016;22: 1302–10. doi: 10.1261/rna.056911.116 27354704

39. Black DL. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem. 2003;72: 291–336. doi: 10.1146/annurev.biochem.72.121801.161720 12626338

40. Chua K, Reed R. An upstream AG determines whether a downstream AG is selected during catalytic step II of splicing. Mol Cell Biol. 2001;21: 1509–14. doi: 10.1128/MCB.21.5.1509-1514.2001 11238888

41. Lallena MJ, Chalmers KJ, Llamazares S, Lamond AI, Valcárcel J. Splicing Regulation at the Second Catalytic Step by Sex-lethal Involves 3′ Splice Site Recognition by SPF45. Cell. 2002;109: 285–296. doi: 10.1016/s0092-8674(02)00730-4 12015979

42. Konarska MM, Vilardell J, Query CC. Repositioning of the Reaction Intermediate within the Catalytic Center of the Spliceosome. Mol Cell. 2006;21: 543–553. doi: 10.1016/j.molcel.2006.01.017 16483935

43. Schirmer M, D’Amore R, Ijaz UZ, Hall N, Quince C. Illumina error profiles: resolving fine-scale variation in metagenomic sequencing data. BMC Bioinformatics. 2016;17: 125. doi: 10.1186/s12859-016-0976-y 26968756

44. Cartegni L, Hastings ML, Calarco JA, de Stanchina E, Krainer AR. Determinants of Exon 7 Splicing in the Spinal Muscular Atrophy Genes, SMN1 and SMN2. Am J Hum Genet. 2006;78: 63–77. doi: 10.1086/498853 16385450

45. Kashima T, Rao N, Manley JL. An intronic element contributes to splicing repression in spinal muscular atrophy. Proc Natl Acad Sci. 2007;104: 3426–3431. doi: 10.1073/pnas.0700343104 17307868

46. Smith PJ, Zhang C, Wang J, Chew SL, Zhang MQ, Krainer AR. An increased specificity score matrix for the prediction of SF2/ASF-specific exonic splicing enhancers. Hum Mol Genet. 2006;15: 2490–2508. doi: 10.1093/hmg/ddl171 16825284

47. Singh NN, Howell MD, Singh RN. Transcriptional and Splicing Regulation of Spinal Muscular Atrophy Genes. Spinal Muscular Atrophy. Elsevier; 2017. pp. 75–97. doi: 10.1016/B978-0-12-803685-3.00005-7

48. Singh NN, Singh RN. Alternative splicing in spinal muscular atrophy underscores the role of an intron definition model. RNA Biol. 2011;8: 600–606. doi: 10.4161/rna.8.4.16224 21654213

49. Singh NN, Androphy EJ, Singh RN. In vivo selection reveals combinatorial controls that define a critical exon in the spinal muscular atrophy genes. RNA. 2004;10: 1291–1305. doi: 10.1261/rna.7580704 15272122

50. Hofmann Y, Lorson CL, Stamm S, Androphy EJ, Wirth B. Htra2-beta 1 stimulates an exonic splicing enhancer and can restore full-length SMN expression to survival motor neuron 2 (SMN2). Proc Natl Acad Sci. 2000;97: 9618–9623. doi: 10.1073/pnas.160181697 10931943

51. Watermann DO, Tang Y, Zur Hausen A, Jäger M, Stamm S, Stickeler E. Splicing factor Tra2-beta1 is specifically induced in breast cancer and regulates alternative splicing of the CD44 gene. Cancer Res. 2006;66: 4774–80. doi: 10.1158/0008-5472.CAN-04-3294 16651431

Článek vyšel v časopise


2019 Číslo 10
Nejčtenější tento týden