OCT-Angiography: Mydriatic phenylephrine and tropicamide do not influence retinal microvasculature in macula and peripapillary region

Autoři: Bettina Hohberger aff001;  Meike Müller aff001;  Sami Hosari aff001;  Christian Y. Mardin aff001
Působiště autorů: Department of Ophthalmology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany aff001
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0221395



Optical coherence tomography angiography (OCT-A) enables visualization of retinal microcirculation. As a potential influence of mydriatic eye drops on retinal vessel density (VD) was proposed, the purpose of the present study was to investigate an influence of 5% phenylephrine and 0.5% tropicamide on macula and peripapillary VD.


30 eyes of 30 healthy persons were measured by en face OCT-A (Spectralis OCT II, Heidelberg Engineering, Heidelberg). Scans of the macula (12 sectors, region of interest, ROI: 6.10 mm2) and peripapillary region (4 sectors, ROI: 2.67 mm2) were performed before (-) and 30 minutes after application of phenylephrine 5% and tropicamide 0.5% (+) eye drops (scan size was 8.41 mm2). Macula microcirculation was quantified in 3 retinal layers (superficial vascular plexus (SVP), deep capillary plexus (DCP), intermediate capillary plexus (ICP)). Data analysis was performed with the Erlangen-Angio-Tool.


(I) Mean VD was 33.03±2.3 (SVP), 23.53±2.9 (ICP) and 25.48±4.2 (DCP) before and 33.12±2.4 (SVP), 23.74±2.9 (ICP) and 25.82±4.0 (DCP) with mydriasis respectively. (II) Sectorial analysis: 30.63±2.9–34.45±2.9 (-) and 31.04±2.9–34.34±2.7 (+) in SVP; 22.61±2.9–24.93±3.2 (-) and 22.75±2.5–25.20±3.0 (+) in ICP; 24.56±4.7–26.45±3.4 (-) and 25.00±4.1–27.07±3.5 (+) in DCP. (III) Peripapillary region showed a mean VD of 31.82±3.8 before and 31.59±4.3 after mydriasis. Sectorial analysis of VD yielded a range of 31.04±4.1–32.65±3.8 (-) and 30.98±4.4–31.89±4.1 (+). (IV) Macula and peripapillary VD were not different before and after mydriasis (p>0.05).


Pharmacologic mydriasis did not influence retinal microcirculation in macula and peripapillary region enabling OCT-A scans with enhanced imaging process and scan quality.

Klíčová slova:

Blood flow – Capillaries – Eye diseases – Eyes – Lasers – Retinal vessels – Tomography – Microcirculation


1. Jia Y, Morrison JC, Tokayer J, Tan O, Lombardi L, Baumann B, et al. (2012) Quantitative OCT angiography of optic nerve head blood flow. Biomed Opt Express 3: 3127–3137. doi: 10.1364/BOE.3.003127 23243564

2. de Carlo TE, Romano A, Waheed NK, Duker JS (2015) A review of optical coherence tomography angiography (OCTA). Int J Retina Vitreous 1: 5. doi: 10.1186/s40942-015-0005-8 27847598

3. Harazny JM, Schmieder RE, Welzenbach J, Michelson G (2013) Local application of tropicamide 0.5% reduces retinal capillary blood flow. Blood Press 22: 371–376. doi: 10.3109/08037051.2013.782956 23597124

4. Takayama J, Mayama C, Mishima A, Nagahara M, Tomidokoro A, Araie M (2009) Topical phenylephrine decreases blood velocity in the optic nerve head and increases resistive index in the retinal arteries. Eye (Lond) 23: 827–834.

5. Takayama J, Mishima A, Ishii K (2004) Effects of topical phenylephrine on blood flow in the posterior segments of monkey and aged human eyes. Jpn J Ophthalmol 48: 243–248. doi: 10.1007/s10384-004-0051-5 15175916

6. Tsui E, Sehi M, Cheng RW, Wan J, Wong T, Dorner S, et al. (2013) The impact of topical mydriatic ophthalmic solutions on retinal vascular reactivity and blood flow. Exp Eye Res 112: 134–138. doi: 10.1016/j.exer.2013.05.005 23701974

7. Cheng J, Yu J, Jiang C, Sun X (2017) Phenylephrine Affects Peripapillary Retinal Vasculature-an Optic Coherence Tomography Angiography Study. Front Physiol 8: 996. doi: 10.3389/fphys.2017.00996 29255424

8. Eyeson-Annan ML, Hirst LW, Battistutta D, Green A (1998) Comparative pupil dilation using phenylephrine alone or in combination with tropicamide. Ophthalmology 105: 726–732. doi: 10.1016/S0161-6420(98)94030-1 9544648

9. Park JH, Lee YC, Lee SY (2009) The comparison of mydriatic effect between two drugs of different mechanism. Korean J Ophthalmol 23: 40–42. doi: 10.3341/kjo.2009.23.1.40 19337478

10. Hosari S HB, Theelke L, Hasan S, Mardin CY (2019) OCT angiography: Measurement of retinal macular microvasculature with Spectralis II OCT angiography reliability and reproducibility ARVO Imaging Conference. Vancouver: IOVS.

11. Yu J, Jiang C, Wang X, Zhu L, Gu R, Xu H, et al. (2015) Macular perfusion in healthy Chinese: an optical coherence tomography angiogram study. Invest Ophthalmol Vis Sci 56: 3212–3217. doi: 10.1167/iovs.14-16270 26024105

12. Rao HL, Pradhan ZS, Weinreb RN, Dasari S, Riyazuddin M, Venugopal JP, et al. (2017) Optical Coherence Tomography Angiography Vessel Density Measurements in Eyes With Primary Open-Angle Glaucoma and Disc Hemorrhage. J Glaucoma 26: 888–895. doi: 10.1097/IJG.0000000000000758 28991833

13. Alnawaiseh M, Lahme L, Treder M, Rosentreter A, Eter N (2017) Short-Term Effects of Exercise on Optic Nerve and Macular Perfusion Measured by Optical Coherence Tomography Angiography. Retina 37: 1642–1646. doi: 10.1097/IAE.0000000000001419 27941530

14. Campbell J, Zhang M, Hwang T, Bailey S, Wilson D, Jia Y, et al. (2017) Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography. Scientific reports 7: 42201. doi: 10.1038/srep42201 28186181

15. Laties AM, Jacobowitz D (1966) A comparative study of the autonomic innervation of the eye in monkey, cat, and rabbit. Anat Rec 156: 383–395. doi: 10.1002/ar.1091560403 4960396

16. Laties AM (1967) Central retinal artery innervation. Absence of adrenergic innervation to the intraocular branches. Arch Ophthalmol 77: 405–409. doi: 10.1001/archopht.1967.00980020407021 4960032

17. Pournaras CJ, Rungger-Brandle E, Riva CE, Hardarson SH, Stefansson E (2008) Regulation of retinal blood flow in health and disease. Prog Retin Eye Res 27: 284–330. doi: 10.1016/j.preteyeres.2008.02.002 18448380

18. Kur J, Newman EA, Chan-Ling T (2012) Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease. Prog Retin Eye Res 31: 377–406. doi: 10.1016/j.preteyeres.2012.04.004 22580107

19. Lazareno S, Buckley NJ, Roberts FF (1990) Characterization of Muscarinic M4 Binding-Sites in Rabbit Lung, Chicken Heart, and Ng108-15 Cells. Molecular Pharmacology 38: 805–815. 2250662

20. Lazareno S, Birdsall NJ (1993) Pharmacological characterization of acetylcholine-stimulated [35S]-GTP gamma S binding mediated by human muscarinic m1-m4 receptors: antagonist studies. Br J Pharmacol 109: 1120–1127. doi: 10.1111/j.1476-5381.1993.tb13738.x 8401923

21. Wu DM, Kawamura H, Sakagami K, Kobayashi M, Puro DG (2003) Cholinergic regulation of pericyte-containing retinal microvessels. Am J Physiol Heart Circ Physiol 284: H2083–2090. doi: 10.1152/ajpheart.01007.2002 12560212

22. Rosenblum WI (2018) Endothelium-dependent responses in the microcirculation observed in vivo. Acta Physiol (Oxf) 224: e13111.

23. Ferrari-Dileo G, Davis EB, Anderson DR (1992) Effects of cholinergic and adrenergic agonists on adenylate cyclase activity of retinal microvascular pericytes in culture. Invest Ophthalmol Vis Sci 33: 42–47. 1346126

24. Rosa RH Jr., Hein TW, Yuan Z, Xu W, Pechal MI, Geraets RL, et al. (2006) Brimonidine evokes heterogeneous vasomotor response of retinal arterioles: diminished nitric oxide-mediated vasodilation when size goes small. Am J Physiol Heart Circ Physiol 291: H231–238. doi: 10.1152/ajpheart.01281.2005 16489103

25. Ferrari-Dileo G, Davis EB, Anderson DR (1990) Response of retinal vasculature to phenylephrine. Invest Ophthalmol Vis Sci 31: 1181–1182. 2354919

Článek vyšel v časopise


2019 Číslo 10