Behavioral predictors of subsequent respiratory illness signs in dogs admitted to an animal shelter


Autoři: Alexandra Protopopova aff001;  Nathaniel J. Hall aff002;  Kelsea M. Brown aff002;  Allison S. Andrukonis aff002;  Jessica P. Hekman aff003
Působiště autorů: The University of British Columbia, Faculty of Land and Food Systems, Vancouver, British Columbia, Canada aff001;  Texas Tech University, Department of Animal and Food Sciences, Lubbock, Texas, United States of America aff002;  The Broad Institute of MIT and Harvard, Vertebrate Genomics Group, Boston, Massachusetts, United States of America aff003
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224252

Souhrn

Individual variability is evident in behavior and physiology of animals. Determining whether behavior at intake may predict subsequent illness in the animal shelter may influence the management of dogs housed at animal shelters and reduce overall disease. While normally associated with mild disease and low mortality rates, respiratory disease nevertheless poses significant challenges to the management of dogs in the stressful environment of animal shelters due to its highly infectious nature. Therefore, the aim of the study was to explore whether behavior at intake can predict subsequent occurrence and progression of upper respiratory disease in dogs at animal shelters. In a correlational study, 84 dogs were assessed throughout their stay at a city animal shelter. The dogs were subjected to a behavioral assessment, 1 min in-kennel behavioral observations across two observation periods, and the collection of urinary cortisol:creatinine (C:C) ratio. The occurrence and progression of upper respiratory disease was monitored through repeated clinical exams (rectal temperature and the occurrence of nasal and ocular discharge, and presence of coughing and sneezing). A basic PLS Path regression model revealed that time in the shelter (estimate = .53, p < .001), and sociability (estimate = .24, p < .001) and curiosity scores (estimate = .09, p = .026) were associated with increased illness. Activity and anxiety scores, however, were not associated with illness. Urinary C:C, taken on the first full day, did not predict subsequent illness when accounting for time. Limitations included attrition of dogs, a small percentage receiving vaccinations, and continuous and non-systematic rotation of dogs in the kennels. Understanding if behavior can predict subsequent illness may improve shelter management practices, and in turn, result in improved live-release outcomes.

Klíčová slova:

Animal behavior – Cortisol – Coughing – Dogs – Legs – Respiratory infections – Vaccination and immunization – Sneezing


Zdroje

1. Gingrich E, Lappin M. Practical overview of common infectious disease agents. Shelter Medicine for Veterinarians and Staff, Second Edition. 2013. pp. 297–328.

2. Appel MJ. Canine infectious tracheobronchitis (kennel cough): a status report. Compend Contin Educ Pract Vet. 1981;3: 70–79.

3. Appel M, Binn LN. Canine infectious tracheobronchitis short review: kennel cough. In: Appel MJ, editor. Virus infections of carnivores. 1987.

4. Dinnage JD. Treatment strategies. Shelter Medicine for Veterinarians and Staff, Second Edition. 2013. pp. 343–348.

5. Miller L, Hurley K. Infectious disease management in animal shelters. John Wiley & Sons; 2009.

6. Rand J, Lancaster E, Inwood G, Cluderay C, Marston L. Strategies to reduce the euthanasia of impounded dogs and cats used by councils in Victoria, Australia. Animals. 2018; doi: 10.3390/ani8070100 29933633

7. Patronek GJ, Crowe A. Factors associated with high live release for dogs at a large, open-admission, municipal shelter. Animals. 2018; doi: 10.3390/ani8040045 29597307

8. Dudley ES, Schiml PA, Hennessy MB. Effects of repeated petting sessions on leukocyte counts, intestinal parasite prevalence, and plasma cortisol concentration of dogs housed in a county animal shelter. J Am Vet Med Assoc. 2015; doi: 10.2460/javma.247.11.1289 26594812

9. Day MJ. Immune System Development in the Dog and Cat. J Comp Pathol. 2007; doi: 10.1016/j.jcpa.2007.04.005 17560591

10. Yamamoto JK, Hansen H, Ho EW, Morishita TY, Okuda T, Sawa TR, et al. Epidemiologic and clinical aspects of feline immunodeficiency virus infection in cats from the continental United States and Canada and possible mode of transmission. J Am Vet Med Assoc. 1989;

11. Hennessy MB. Using hypothalamic-pituitary-adrenal measures for assessing and reducing the stress of dogs in shelters: A review. Applied Animal Behaviour Science. 2013. doi: 10.1016/j.applanim.2013.09.004

12. Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews. 2000. doi: 10.1210/er.21.1.55

13. Chrousos GP, Gold PW. The Concepts of Stress and Stress System Disorders: Overview of Physical and Behavioral Homeostasis. JAMA J Am Med Assoc. 1992; doi: 10.1001/jama.1992.03480090092034

14. Protopopova A. Effects of sheltering on physiology, immune function, behavior, and the welfare of dogs. Physiology and Behavior. 2016. doi: 10.1016/j.physbeh.2016.03.020 26996275

15. Skandakumar S, Stodulski G, Hau J. SALIVARY IgA: A POSSIBLE STRESS MARKER IN DOGS. Lab Anim Sci. 1995;

16. Holmgren J, Czerkinsky C, Lycke N, Svennerholm AM. Mucosal immunity: implications for vaccine development. Immunobiology. 1992;184: 157–179. doi: 10.1016/S0171-2985(11)80473-0 1587541

17. Gosling SD, John OP. Personality dimensions in nonhuman animals: A cross-species review. Curr Dir Psychol Sci. 1999; doi: 10.1111/1467-8721.00017

18. Capitanio JP, Mendoza SP, Baroncelli S. The relationship of personality dimensions in adult male rhesus macaques to progression of simian immunodeficiency virus disease. Brain Behav Immun. 1999; doi: 10.1006/brbi.1998.0540 10373278

19. Bolhuis JE, Parmentier HK, Schouten WGP, Schrama JW, Wiegant VM. Effects of housing and individual coping characteristics on immune responses of pigs. Physiol Behav. 2003; doi: 10.1016/S0031-9384(03)00090-8

20. Natoli E, Say L, Cafazzo S, Bonanni R, Schmid M, Pontier D. Bold attitude makes male urban feral domestic cats more vulnerable to Feline Immunodeficiency Virus. Neuroscience and Biobehavioral Reviews. 2005. doi: 10.1016/j.neubiorev.2004.06.011 15652262

21. Easterbrook JD, Kaplan JB, Glass GE, Pletnikov M V., Klein SL. Elevated testosterone and reduced 5-HIAA concentrations are associated with wounding and hantavirus infection in male Norway rats. Horm Behav. 2007; doi: 10.1016/j.yhbeh.2007.07.001 17719050

22. Boyer N, Réale D, Marmet J, Pisanu B, Chapuis JL. Personality, space use and tick load in an introduced population of Siberian chipmunks Tamias sibiricus. J Anim Ecol. 2010; doi: 10.1111/j.1365-2656.2010.01659.x 20202009

23. Burdick NC, Randel RD, Carroll JA, Welsh TH. Interactions between Temperament, Stress, and Immune Function in Cattle. Int J Zool. 2011; doi: 10.1155/2011/373197

24. Hughes HD, Carroll JA, Sanchez NCB, Richeson JT. Natural variations in the stress and acute phase responses of cattle. Innate Immunity. 2014. doi: 10.1177/1753425913508993 24217218

25. University of Florida Maddie’s Shelter Medicine Program. Management of Disease Outbreaks in Animal Shelters [Internet]. 2018. Available: https://sheltermedicine.vetmed.ufl.edu/files/2017/01/Management-of-disease-outbreaks-in-shelters.2018.pdf

26. Corsetti S, Borruso S, Di Traglia M, Lai O, Alfieri L, Villavecchia A, et al. Bold personality makes domestic dogs entering a shelter less vulnerable to diseases. PLoS One. 2018; doi: 10.1371/journal.pone.0193794 29596432

27. Edinboro CH, Ward MP, Glickman LT. A placebo-controlled trial of two intranasal vaccines to prevent tracheobronchitis (kennel cough) in dogs entering a humane shelter. Prev Vet Med. 2004; doi: 10.1016/j.prevetmed.2003.10.001 15156996

28. Protopopova A, Hauser H, Goldman KJ, Wynne CDL. The effects of exercise and calm interactions on in-kennel behavior of shelter dogs. Behav Processes. 2018; doi: 10.1016/j.beproc.2017.11.013 29158026

29. Protopopova A, Mehrkam LR, Boggess MM, Wynne CDL. In-kennel behavior predicts length of stay in shelter dogs. PLoS One. 2014; doi: 10.1371/journal.pone.0114319 25551460

30. Laflamme D. Development and validation of a body condition score system for dogs. Canine Pract. 1997; doi: 10.1016/j.urolonc.2006.12.013

31. Hennessy MB, Voith VL, Mazzei SJ, Buttram J, Miller DD, Linden F. Behavior and cortisol levels of dogs in a public animal shelter, and an exploration of the ability of these measures to predict problem behavior after adoption. Appl Anim Behav Sci. 2001; doi: 10.1016/S0168-1591(01)00139-3

32. Sanchez G, Trinchera L, Russolillo G. Tools for Partial Least Squares Path Modeling (PLS-PM) [Internet]. 2017. p. R package version 0.4.9. Available: https://cran.r-project.org/package=plspm

33. Clark GI, Boyer WN. The effects of dog obedience training and behavioural counselling upon the human-canine relationship. Appl Anim Behav Sci. 1993; doi: 10.1016/0168-1591(93)90107-Z

34. Dowling-Guyer S, Marder A, D’Arpino S. Behavioral traits detected in shelter dogs by a behavior evaluation. Appl Anim Behav Sci. 2011; doi: 10.1016/j.applanim.2010.12.004

35. Gácsi M, Gyori B, Miklósi Á, Virányi Z, Kubinyi E, Topál J, et al. Species-specific differences and similarities in the behavior of hand-raised dog and wolf pups in social situations with humans. Dev Psychobiol. 2005; doi: 10.1002/dev.20082 16136572

36. Svartberg K, Forkman B. Personality traits in the domestic dog (Canis familiaris). Appl Anim Behav Sci. 2002; doi: 10.1016/S0168-1591(02)00121-1

37. Hekman JP, Karas AZ, Dreschel NA. Salivary cortisol concentrations and behavior in a population of healthy dogs hospitalized for elective procedures. Appl Anim Behav Sci. 2012; doi: 10.1016/j.applanim.2012.08.007 24204086

38. Wickham H. ggplot2—Elegant Graphics for Data Analysis. Journal of Statistical Software. 2016. doi: 10.18637/jss.v077.b02

39. Pecoraro HL, Bennett S, Huyvaert KP, Spindel ME, Landolt GA. Epidemiology and ecology of h3n8 canine influenza viruses in us shelter dogs. J Vet Intern Med. 2014; doi: 10.1111/jvim.12301 24467389

40. Horváth Z, Igyártó BZ, Magyar A, Miklósi Á. Three different coping styles in police dogs exposed to a short-term challenge. Horm Behav. 2007; doi: 10.1016/j.yhbeh.2007.08.001 17900575

41. Wood PA, de Bie J, Clarke JA. Behavioural and physiological responses of domestic dogs (Canis familiaris) to agonistic growls from conspecifics. Appl Anim Behav Sci. 2014; doi: 10.1016/j.applanim.2013.12.011

42. Wilson DS, Coleman K, Clark AB, Biederman L. Shy-bold continuum in pumpkinseed sunfish (Lepomis gibbosus): an ecological study of a psychological trait. J Comp Psychol. 1993; doi: 10.1037/0735-7036.107.3.250

43. Brown ED, Macdonald DW, Tewand TE, Todd IA. Apodemus sylvaticus infected with Heligmosomoides polygyrus (Nematoda) in an arable ecosystem: epidemiology and effects of infection on the movements of male mice. J Zool. 1994; doi: 10.1111/j.1469-7998.1994.tb04869.x

44. Careau V, Garland T. Performance, Personality, and Energetics: Correlation, Causation, and Mechanism. Physiol Biochem Zool. 2012; doi: 10.1086/666970 23099454

45. Réale D, Reader SM, Sol D, McDougall PT, Dingemanse NJ. Integrating animal temperament within ecology and evolution. Biological Reviews. 2007. doi: 10.1111/j.1469-185X.2007.00010.x 17437562

46. Le Galliard JF, Paquet M, Cisel M, Montes-Poloni L. Personality and the pace-of-life syndrome: Variation and selection on exploration, metabolism and locomotor performances. Funct Ecol. 2013; doi: 10.1111/1365-2435.12017

47. Wikelski M, Spinney L, Schelsky W, Scheuerlein A, Gwinner E. Slow pace of life in tropical sedentary birds: A common-garden experiment on four stonechat populations from different latitudes. Proc R Soc B Biol Sci. 2003; doi: 10.1098/rspb.2003.2500 14667355

48. Careau V, Réale D, Humphries MM, Thomas DW. The Pace of Life under Artificial Selection: Personality, Energy Expenditure, and Longevity Are Correlated in Domestic Dogs. Am Nat. 2010; doi: 10.1086/652435 20384493

49. Chersini N, Hall NJ, Wynne CDL. Dog Pups’ Attractiveness to Humans Peaks at Weaning Age. Anthrozoos. 2018; doi: 10.1080/08927936.2018.1455454

50. Boitani L, Ciucci P. Comparative social ecology of feral dogs and wolves. Ethol Ecol Evol. 1995; doi: 10.1080/08927014.1995.9522969

51. van de Pol M, Wright J. A simple method for distinguishing within- versus between-subject effects using mixed models. Animal Behaviour. 2009. doi: 10.1016/j.anbehav.2008.11.006

52. Spindel M. Strategies for management of infectious diseases in a shelter. Shelter Medicine for Veterinarians and Staff, Second Edition. 2013. pp. 279–286.


Článek vyšel v časopise

PLOS One


2019 Číslo 10