Acetylcholine-mediated top-down attention improves the response to bottom-up inputs by deformation of the attractor landscape

Autoři: Takashi Kanamaru aff001;  Kazuyuki Aihara aff002
Působiště autorů: Department of Mechanical Science and Engineering, Kogakuin University, Tokyo, Japan aff001;  International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan aff002;  Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, Japan aff003
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article


To understand the effect of attention on neuronal dynamics, we propose a multi-module network, with each module consisting of fully interconnected groups of excitatory and inhibitory neurons. This network shows transitive dynamics among quasi-attractors as its typical dynamics. When the release of acetylcholine onto the network is simulated by attention, the transitive dynamics change into stable dynamics in which the system converges to an attractor. We found that this network can reproduce three experimentally observed properties of attention-dependent response modulation, namely an increase in the firing rate, a decrease in the Fano factor of the firing rate, and a decrease in the correlation coefficients between the firing rates of pairs of neurons. Moreover, we also showed theoretically that the release of acetylcholine increases the sensitivity to bottom-up inputs by changing the response function.

Klíčová slova:

Action potentials – Attention – Deformation – Network analysis – Neural networks – Neurons – Synapses – Vision


1. Thiele A, Bellgrove MA. Neuromodulation of attention. Neuron. 2018;97:769–785. doi: 10.1016/j.neuron.2018.01.008 29470969

2. Perry EK, Perry RH. Acetylcholine and hallucinations: disease-related compared to drug-induced alterations in human consciousness. Brain Cognition. 1995;28:240–258. doi: 10.1006/brcg.1995.1255 8546852

3. Froemke RC, Merzenich MM, Schreiner CE. A synaptic memory trace for cortical receptive field plasticity. Nature. 2007;450:425–429. doi: 10.1038/nature06289 18004384

4. Parikh V, Kozak R, Martinez V, Sarter M. Prefrontal acetylcholine release controls cue detection on multiple timescales. Neuron. 2007;56:141–154. doi: 10.1016/j.neuron.2007.08.025 17920021

5. Reynolds JH, Pasternak T, Desimone R. Attention increases sensitivity of V4 neurons. Neuron. 2000;26:703–714. doi: 10.1016/s0896-6273(00)81206-4 10896165

6. Williford T, Maunsell HR. Effects of spatial attention on contrast response functions in macaque area V4. J Neurophysiol. 2006;96:40–54. doi: 10.1152/jn.01207.2005 16772516

7. Lee J, Maunsell HR. A normalization model of attentional modulation of single unit responses. PLOS ONE. 2009;4:e4651. doi: 10.1371/journal.pone.0004651 19247494

8. Reynolds JH, Heeger DJ. The normalization model of attention. Neuron. 2009;61:168–185. doi: 10.1016/j.neuron.2009.01.002 19186161

9. Carandini M, Heeger DJ. Normalization as a canonical neural computation. Nature Reviews of Neuroscience. 2012;13:51–62. doi: 10.1038/nrn3136

10. Kanamaru T, Fujii H, Aihara K. Deformation of attractor landscape via cholinergic presynaptic modulations: a computational study using a phase neuron model. PLOS ONE. 2013;8:e53854. doi: 10.1371/journal.pone.0053854 23326520

11. Gulledge AT, Park SB, Kawaguchi Y, Stuart GJ. Heterogeneity of phasic cholinergic signaling in neocortical neurons. J Neurophysiol. 2007;97:2215–2229. doi: 10.1152/jn.00493.2006 17122323

12. Salgado H, Bellay T, Nichols JA, Bose M, Martinolich L, Perrotti L, et al. Muscarinic M2 and M1 receptors reduce GABA release by Ca2+ channel modulation through activation of PI2K/Ca2+-independent and PLC/Ca2+-dependent PKC. J Neurophysiol. 2007;98:952–965. doi: 10.1152/jn.00060.2007 17581851

13. Kruglikov I, Rudy B. Perisomatic GABA release and thalamocortical integration onto neocortical excitatory cells are regulated by neuromodulators. Neuron. 2008;58:911–924. doi: 10.1016/j.neuron.2008.04.024 18579081

14. Mitchell JF, Sundberg KA, Reynolds JH. Differential attention-dependent response modulation across cell classes in macaque visual area V4. Neuron. 2007;55:131–141. doi: 10.1016/j.neuron.2007.06.018 17610822

15. Mitchell JF, Sundberg KA, Reynolds JH. Spatial attention decorrelates intrinsic activity fluctuations in macaque area 4. Neuron. 2009;63:879–888. doi: 10.1016/j.neuron.2009.09.013 19778515

16. Linster C, Hasselmo ME. Neuromodulation and the functional dynamics of piriform cortex. Chem Senses. 2001;26:585–594. doi: 10.1093/chemse/26.5.585 11418504

17. Hasselmo ME, McGaughy J. High acetylcholine sets circuit dynamics for attention and encoding; Low acetylcholine sets dynamics for consolidation. Brain Res. 2004;145:207–231. doi: 10.1016/S0079-6123(03)45015-2

18. Deco G, Thiele A. Cholinergic control of cortical network interactions enables feedback-mediated attentional modulation. European J of Neurosci. 2011;34:146–157. doi: 10.1111/j.1460-9568.2011.07749.x

19. Deco G, Hugues E. Neural network mechanisms underlying stimulus driven variability reduction. PLOS Computational Biology. 2012;8:e1002395. doi: 10.1371/journal.pcbi.1002395 22479168

20. Milnor J. On the concept of attractor. Commun Math Phys. 1985;99:177–195. doi: 10.1007/BF01212280

21. Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A. Spontaneously emerging cortical representations of visual attributes. Nature. 2003;425:954–956. doi: 10.1038/nature02078 14586468

22. Golmayo L, Nunez A, Zaborsky L. Electrophysiological evidence for the existence of a posterior cortical-prefrontal-basal forebrain circuitry in modulating sensory responses in visual and somatosensory rat cortical areas. Neuroscience. 2003;119:597–609. doi: 10.1016/s0306-4522(03)00031-9 12770572

23. Mumford D. On the computational architecture of the neocortex II The role of cortico-cortical loops. Biol Cybern. 1992;66:241–251. doi: 10.1007/bf00198477 1540675

24. Rodriguez A, Whitson J, Granger R. Derivation and analysis of basic computational operations of thalamocortical circuits. J Cogn Neurosci. 2004;16:856–877. doi: 10.1162/089892904970690 15200713

25. Mountcastle VB. The columnar organization of the neocortex. Brain. 1997;120:701–722. doi: 10.1093/brain/120.4.701 9153131

26. Kanamaru T, Sekine M. Synchronized firings in the networks of class 1 excitable neurons with excitatory and inhibitory connections and their dependences on the forms of interactions. Neural Comput. 2005;17:1315–1338. doi: 10.1162/0899766053630387 15901400

27. Kanamaru T. Chaotic pattern transitions in pulse neural networks. Neural Networks. 2007;20:781–790. doi: 10.1016/j.neunet.2007.06.002 17689050

28. Raichle ME. The brain’s default mode network. Annu Rev Neurosci. 2015;38:433–447. doi: 10.1146/annurev-neuro-071013-014030 25938726

29. Gardiner CW. Handbook of Stochastic Methods. Berlin: Springer-Verlag.; 1985.

30. Gil Z, Connors BW, Amitai Y. Differential regulation of neocortical synapses by activity and neuromodulators. Neuron. 1997;19:679–686. doi: 10.1016/s0896-6273(00)80380-3 9331357

31. Kuczewski N, Aztiria E, Gautam D, Wess J, Domenici L. Acetylcholine modulates cortical synaptic transmission via different muscarinic receptors, as studied with receptor knockout mice. J Physiol. 2005;566:907–919. doi: 10.1113/jphysiol.2005.089987 15919709

32. Kimura F, Fukuda M, Tsumoto T. Acetylcholine suppresses the spread of excitation in the visual cortex revealed by optical recording: possible differential effect depending on the source of input. Eur J Neurosci. 1999;11:3597–3609. doi: 10.1046/j.1460-9568.1999.00779.x 10564367

33. Hsieh CY, Cruikshank SJ, Metherate R. Differential modulation of auditory thalamocortical and intracortical synaptic transmission by cholinergic agonist. Brain Research. 2000;880:51–64. doi: 10.1016/s0006-8993(00)02766-9 11032989

34. Buño W, Cabezas C, Fernández de Sevilla D. Presynaptic muscarinic control of glutamatergic synaptic transmission. J Mol Neurosci. 2006;30:161–163. doi: 10.1385/JMN:30:1:161 17192666

35. Levy RB, Reyes AD, Aoki C. Nicotinic and muscarinic reduction of unitary excitatory postsynaptic potentials in sensory cortex: dual intracellular recording in vitro. J Neurophysiol. 2006;95:2155–2166. doi: 10.1152/jn.00603.2005 16421199

36. Desimone R, Ducan J. Neural mechanisms of selective visual attention. Annu Rev Neurosci. 1995;18:193–222. doi: 10.1146/ 7605061

37. Reynolds JH, Chelazzi L, Desimone R. Competitive mechanisms subserve attention in macaque areas V2 and V4. J Neurosci. 1999;19:1736–1753. doi: 10.1523/JNEUROSCI.19-05-01736.1999 10024360

38. Deco G, Rolls ET. Neurodynamics of biased competition and cooperation for attention: a model with spiking neurons. J Neurophysiol. 2005;94:295–313. doi: 10.1152/jn.01095.2004 15703227

39. Ermentrout B. Type I membranes, phase resetting curves, and synchrony. Neural Comput. 1996;8:979–1001. doi: 10.1162/neco.1996.8.5.979 8697231

40. Izhikevich EM. Class 1 neural excitability, conventional synapses, weakly connected networks, and mathematical foundations of pulse-coupled models. IEEE T Neural Networ. 1999;10:499–507. doi: 10.1109/72.761707

41. Izhikevich EM. Neural excitability, spiking and bursting. Int J Bifurcat Chaos. 2000;10:1171–1266. doi: 10.1142/S0218127400000840

Článek vyšel v časopise


2019 Číslo 10
Nejčtenější tento týden