#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Ps and Qs of alarmone synthesis in Staphylococcus aureus


Autoři: Ning Yang aff001;  Shujie Xie aff001;  Nga-Yeung Tang aff001;  Mei Yee Choi aff001;  Ying Wang aff002;  Rory M. Watt aff001
Působiště autorů: Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China aff001;  Department of Virology, Wuhan Centers for Disease Prevention and Control, Wuhan, Hubei, China aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0213630

Souhrn

During the stringent response, bacteria synthesize guanosine-3’,5’-bis(diphosphate) (ppGpp) and guanosine-5’-triphosphate 3’-diphosphate (pppGpp), which act as secondary messengers to promote cellular survival and adaptation. (p)ppGpp ‘alarmones’ are synthesized and/or hydrolyzed by proteins belonging to the RelA/SpoT Homologue (RSH) family. Many bacteria also encode ‘small alarmone synthetase’ (SAS) proteins (e.g. RelP, RelQ) which may also be capable of synthesizing a third alarmone: guanosine-5’-phosphate 3’-diphosphate (pGpp). Here, we report the biochemical properties of the Rel (RSH), RelP and RelQ proteins from Staphylococcus aureus (Sa-Rel, Sa-RelP, Sa-RelQ, respectively). Sa-Rel synthesized pppGpp more efficiently than ppGpp, but lacked the ability to produce pGpp. Sa-Rel efficiently hydrolyzed all three alarmones in a Mn(II) ion-dependent manner. The removal of the C-terminal regulatory domain of Sa-Rel increased its rate of (p)ppGpp synthesis ca. 10-fold, but had negligible effects on its rate of (pp)pGpp hydrolysis. Sa-RelP and Sa-RelQ efficiently synthesized pGpp in addition to pppGpp and ppGpp. The alarmone-synthesizing abilities of Sa-RelQ, but not Sa-RelP, were allosterically-stimulated by the addition of pppGpp, ppGpp or pGpp. The respective (pp)pGpp-synthesizing activities of Sa-RelP/Sa-RelQ were compared and contrasted with SAS homologues from Enterococcus faecalis (Ef-RelQ) and Streptococcus mutans (Sm-RelQ, Sm-RelP). Results indicated that EF-RelQ, Sm-RelQ and Sa-RelQ were functionally equivalent; but exhibited considerable variations in their respective biochemical properties, and the degrees to which alarmones and single-stranded RNA molecules allosterically modulated their respective alarmone-synthesizing activities. The respective (pp)pGpp-synthesizing capabilities of Sa-RelP and Sm-RelP proteins were inhibited by pGpp, ppGpp and pppGpp. Our results support the premise that RelP and RelQ proteins may synthesize pGpp in addition to (p)ppGpp within S. aureus and other Gram-positive bacterial species.

Klíčová slova:

Enterococcus faecalis – Hydrolysis – Oligomers – Recombinant proteins – Staphylococcus aureus – Streptococcus mutans – RNA synthesis – Enzyme kinetics


Zdroje

1. Cashel M. The control of ribonucleic acid synthesis in Escherichia coli. IV. Relevance of unusual phosphorylated compounds from amino acid-starved stringent strains. J Biol Chem. 1969;244(12):3133–41. 4893338.

2. Cashel M, Kalbacher B. The control of ribonucleic acid synthesis in Escherichia coli. V. Characterization of a nucleotide associated with the stringent response. J Biol Chem. 1970;245(9):2309–18. 4315151.

3. Cashel M, Gallant J. Two compounds implicated in the function of the RC gene of Escherichia coli. Nature. 1969;221(5183):838–41. doi: 10.1038/221838a0 4885263.

4. Potrykus K, Cashel M. (p)ppGpp: still magical? Annu Rev Microbiol. 2008;62:35–51. doi: 10.1146/annurev.micro.62.081307.162903 18454629.

5. Braeken K, Moris M, Daniels R, Vanderleyden J, Michiels J. New horizons for (p)ppGpp in bacterial and plant physiology. Trends Microbiol. 2006;14(1):45–54. doi: 10.1016/j.tim.2005.11.006 16343907.

6. Dalebroux ZD, Svensson SL, Gaynor EC, Swanson MS. ppGpp conjures bacterial virulence. Microbiol Mol Biol Rev. 2010;74(2):171–99. doi: 10.1128/MMBR.00046-09 20508246.

7. Srivatsan A, Wang JD. Control of bacterial transcription, translation and replication by (p)ppGpp. Curr Opin Microbiol. 2008;11(2):100–5. doi: 10.1016/j.mib.2008.02.001 18359660.

8. Dalebroux ZD, Swanson MS. ppGpp: magic beyond RNA polymerase. Nat Rev Microbiol. 2012;10(3):203–12. doi: 10.1038/nrmicro2720 22337166.

9. Gaca AO, Colomer-Winter C, Lemos JA. Many means to a common end: the intricacies of (p)ppGpp metabolism and its control of bacterial homeostasis. J Bacteriol. 2015;197(7):1146–56. doi: 10.1128/JB.02577-14 25605304.

10. Hauryliuk V, Atkinson GC, Murakami KS, Tenson T, Gerdes K. Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat Rev Microbiol. 2015;13(5):298–309. doi: 10.1038/nrmicro3448 25853779.

11. Irving SE, Corrigan RM. Triggering the stringent response: signals responsible for activating (p)ppGpp synthesis in bacteria. Microbiology. 2018;164(3):268–76. doi: 10.1099/mic.0.000621 29493495.

12. Cashel M G D, Hernandez VJ, Vinella D. The Stringent Response. In: Escherichia coli and Salmonella Cellular and Molecular Biology. Neidhardt F, editor. Washington, DC: ASM Press; 1996. p. 1458–96.

13. Mittenhuber G. Comparative genomics and evolution of genes encoding bacterial (p)ppGpp synthetases/hydrolases (the Rel, RelA and SpoT proteins). J Mol Microbiol Biotechnol. 2001;3(4):585–600. 11545276.

14. Atkinson GC, Tenson T, Hauryliuk V. The RelA/SpoT homolog (RSH) superfamily: distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life. PLoS One. 2011;6(8):e23479. doi: 10.1371/journal.pone.0023479 21858139.

15. Aravind L, Koonin EV. The HD domain defines a new superfamily of metal-dependent phosphohydrolases. Trends Biochem Sci. 1998;23(12):469–72. doi: 10.1016/s0968-0004(98)01293-6 9868367.

16. Mechold U, Murphy H, Brown L, Cashel M. Intramolecular regulation of the opposing (p)ppGpp catalytic activities of Rel(Seq), the Rel/Spo enzyme from Streptococcus equisimilis. J Bacteriol. 2002;184(11):2878–88. doi: 10.1128/JB.184.11.2878-2888.2002 12003927.

17. Haseltine WA, Block R, Gilbert W, Weber K. MSI and MSII made on ribosome in idling step of protein synthesis. Nature. 1972;238(5364):381–4. doi: 10.1038/238381a0 4559580.

18. An G, Justesen J, Watson RJ, Friesen JD. Cloning the spoT gene of Escherichia coli: identification of the spoT gene product. J Bacteriol. 1979;137(3):1100–10. 374338.

19. Xiao H, Kalman M, Ikehara K, Zemel S, Glaser G, Cashel M. Residual guanosine 3',5'-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J Biol Chem. 1991;266(9):5980–90. 2005134.

20. Mechold U, Cashel M, Steiner K, Gentry D, Malke H. Functional analysis of a relA/spoT gene homolog from Streptococcus equisimilis. J Bacteriol. 1996;178(5):1401–11. doi: 10.1128/jb.178.5.1401-1411.1996 8631718.

21. Avarbock A, Avarbock D, Teh JS, Buckstein M, Wang ZM, Rubin H. Functional regulation of the opposing (p)ppGpp synthetase/hydrolase activities of RelMtb from Mycobacterium tuberculosis. Biochemistry. 2005;44(29):9913–23. doi: 10.1021/bi0505316 16026164.

22. Avarbock D, Avarbock A, Rubin H. Differential regulation of opposing RelMtb activities by the aminoacylation state of a tRNA.ribosome.mRNA.RelMtb complex. Biochemistry. 2000;39(38):11640–8. doi: 10.1021/bi001256k 10995231.

23. Hogg T, Mechold U, Malke H, Cashel M, Hilgenfeld R. Conformational antagonism between opposing active sites in a bifunctional RelA/SpoT homolog modulates (p)ppGpp metabolism during the stringent response. Cell. 2004;117(1):57–68. doi: 10.1016/s0092-8674(04)00260-0 15066282.

24. Murray KD, Bremer H. Control of spoT-dependent ppGpp synthesis and degradation in Escherichia coli. J Mol Biol. 1996;259(1):41–57. doi: 10.1006/jmbi.1996.0300 8648647.

25. Battesti A, Bouveret E. Acyl carrier protein/SpoT interaction, the switch linking SpoT-dependent stress response to fatty acid metabolism. Mol Microbiol. 2006;62(4):1048–63. doi: 10.1111/j.1365-2958.2006.05442.x 17078815.

26. Gratani FL, Horvatek P, Geiger T, Borisova M, Mayer C, Grin I, et al. Regulation of the opposing (p)ppGpp synthetase and hydrolase activities in a bifunctional RelA/SpoT homologue from Staphylococcus aureus. PLoS Genet. 2018;14(7):e1007514. doi: 10.1371/journal.pgen.1007514 29985927.

27. Ronneau S, Caballero-Montes J, Coppine J, Mayard A, Garcia-Pino A, Hallez R. Regulation of (p)ppGpp hydrolysis by a conserved archetypal regulatory domain. Nucleic Acids Res. 2019;47(2):843–54. doi: 10.1093/nar/gky1201 30496454.

28. Arenz S, Abdelshahid M, Sohmen D, Payoe R, Starosta AL, Berninghausen O, et al. The stringent factor RelA adopts an open conformation on the ribosome to stimulate ppGpp synthesis. Nucleic Acids Res. 2016;44(13):6471–81. doi: 10.1093/nar/gkw470 27226493.

29. Martinez-Costa OH, Fernandez-Moreno MA, Malpartida F. The relA/spoT-homologous gene in Streptomyces coelicolor encodes both ribosome-dependent (p)ppGpp-synthesizing and -degrading activities. J Bacteriol. 1998;180(16):4123–32. 9696759.

30. Sajish M, Tiwari D, Rananaware D, Nandicoori VK, Prakash B. A charge reversal differentiates (p)ppGpp synthesis by monofunctional and bifunctional Rel proteins. J Biol Chem. 2007;282(48):34977–83. doi: 10.1074/jbc.M704828200 17911108.

31. Gentry DR, Cashel M. Mutational analysis of the Escherichia coli spoT gene identifies distinct but overlapping regions involved in ppGpp synthesis and degradation. Mol Microbiol 1996:19:1373–1384. doi: 10.1111/j.1365-2958.1996.tb02480.x 8730877

32. Gropp M, Strausz Y, Gross M, Glaser G. Regulation of Escherichia coli RelA requires oligomerization of the C-terminal domain. J Bacteriol. 2001;183(2):570–9. doi: 10.1128/JB.183.2.570-579.2001 11133950.

33. Haseltine WA, Block R. Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes. Proc Natl Acad Sci USA. 1973;70(5):1564–8. doi: 10.1073/pnas.70.5.1564 4576025.

34. Loveland AB, Bah E, Madireddy R, Zhang Y, Brilot AF, Grigorieff N, et al. Ribosome*RelA structures reveal the mechanism of stringent response activation. eLife. 2016;5. doi: 10.7554/eLife.17029 27434674.

35. Fang M, Bauer CE. Regulation of stringent factor by branched-chain amino acids. Proc Natl Acad Sci USA. 2018;115(25):6446–51. doi: 10.1073/pnas.1803220115 29866825.

36. Brown A, Fernández IS, Gordiyenko Y, Ramakrishnan V. Ribosome-dependent activation of stringent control. Nature. 2016;534(7606):277–280. doi: 10.1038/nature17675 27279228.

37. Singal B, Balakrishna AM, Nartey W, Manimekalai MSS, Jeyakanthan J, Grüber G. Crystallographic and solution structure of the N-terminal domain of the Rel protein from Mycobacterium tuberculosis. FEBS Lett. 2017;591(15):2323–2337. doi: 10.1002/1873-3468.12739 28672070.

38. Sobala M, Bruhn-Olszewska B, Cashel M, Potrykus K. Methylobacterium extorquens RSH Enzyme Synthesizes (p)ppGpp and pppApp in vitro and in vivo, and Leads to Discovery of pppApp Synthesis in Escherichia coli. Front. Microbiol. 2019;10:859. doi: 10.3389/fmicb.2019.00859 31068922.

39. Nanamiya H, Kasai K, Nozawa A, Yun CS, Narisawa T, Murakami K, et al. Identification and functional analysis of novel (p)ppGpp synthetase genes in Bacillus subtilis. Mol Microbiol. 2008;67(2):291–304. doi: 10.1111/j.1365-2958.2007.06018.x 18067544.

40. Lemos JA, Lin VK, Nascimento MM, Abranches J, Burne RA. Three gene products govern (p)ppGpp production by Streptococcus mutans. Mol Microbiol. 2007;65(6):1568–81. doi: 10.1111/j.1365-2958.2007.05897.x 17714452.

41. Abranches J, Martinez AR, Kajfasz JK, Chavez V, Garsin DA, Lemos JA. The molecular alarmone (p)ppGpp mediates stress responses, vancomycin tolerance, and virulence in Enterococcus faecalis. J Bacteriol. 2009;191(7):2248–56. doi: 10.1128/JB.01726-08 19168608.

42. Murdeshwar MS, Chatterji D. MS_RHII-RSD, a dual-function RNase HII-(p)ppGpp synthetase from Mycobacterium smegmatis. J Bacteriol. 2012;194(15):4003–14. doi: 10.1128/JB.00258-12 22636779.

43. Ruwe M, Kalinowski J, Persicke M. Identification and Functional Characterization of Small Alarmone Synthetases in Corynebacterium glutamicum. Front Microbiol. 2017;8:1601. doi: 10.3389/fmicb.2017.01601 28871248.

44. Geiger T, Kastle B, Gratani FL, Goerke C, Wolz C. Two small (p)ppGpp synthases in Staphylococcus aureus mediate tolerance against cell envelope stress conditions. J Bacteriol. 2014;196(4):894–902. doi: 10.1128/JB.01201-13 24336937.

45. Das B, Pal RR, Bag S, Bhadra RK. Stringent response in Vibrio cholerae: genetic analysis of spoT gene function and identification of a novel (p)ppGpp synthetase gene. Mol Microbiol. 2009;72(2):380–98. doi: 10.1111/j.1365-2958.2009.06653.x 19298370.

46. Manav MC, Beljantseva J, Bojer MS, Tenson T, Ingmer H, Hauryliuk V, et al. Structural basis for (p)ppGpp synthesis by the Staphylococcus aureus small alarmone synthetase RelP. J Biol Chem. 2018;293(9):3254–64. doi: 10.1074/jbc.RA117.001374 29326162.

47. Beljantseva J, Kudrin P, Andresen L, Shingler V, Atkinson GC, Tenson T, et al. Negative allosteric regulation of Enterococcus faecalis small alarmone synthetase RelQ by single-stranded RNA. Proc Natl Acad Sci USA. 2017;114(14):3726–31. doi: 10.1073/pnas.1617868114 28320944.

48. Steinchen W, Vogt MS, Altegoer F, Giammarinaro PI, Horvatek P, Wolz C, et al. Structural and mechanistic divergence of the small (p)ppGpp synthetases RelP and RelQ. Sci Rep. 2018;8(1):2195. doi: 10.1038/s41598-018-20634-4 29391580.

49. Gaca AO, Kudrin P, Colomer-Winter C, Beljantseva J, Liu K, Anderson B, et al. From (p)ppGpp to (pp)pGpp: Characterization of Regulatory Effects of pGpp Synthesized by the Small Alarmone Synthetase of Enterococcus faecalis. J Bacteriol. 2015;197(18):2908–19. doi: 10.1128/JB.00324-15 26124242.

50. Gentry D, Li T, Rosenberg M, McDevitt D. The rel gene is essential for in vitro growth of Staphylococcus aureus. J Bacteriol. 2000;182(17):4995–7. doi: 10.1128/jb.182.17.4995-4997.2000 10940046.

51. Choi MY, Wang Y, Wong LL, Lu BT, Chen WY, Huang JD, et al. The two PPX-GppA homologues from Mycobacterium tuberculosis have distinct biochemical activities. PLoS One. 2012;7(8):e42561. doi: 10.1371/journal.pone.0042561 22880033.

52. Krohn M, Wagner R. A procedure for the rapid preparation of guanosine tetraphosphate (ppGpp) from Escherichia coli ribosomes. Anal Biochem. 1995;225(1):188–90. Epub 1995/02/10. doi: 10.1006/abio.1995.1138 7778781.

53. Hardiman T, Windeisen V, Ewald JC, Zibek S, Schlack P, Rebell J, et al. In vitro synthesis and characterization of guanosine 3',5'-bis(diphosphate). Anal Biochem. 2008;383(2):337–9. doi: 10.1016/j.ab.2008.07.042 18789883.

54. Fujimura T, Murakami K. Increase of methicillin resistance in Staphylococcus aureus caused by deletion of a gene whose product is homologous to lytic enzymes. J Bacteriol. 1997;179(20):6294–301. doi: 10.1128/jb.179.20.6294-6301.1997 9335275.

55. Jain V, Saleem-Batcha R, China A, Chatterji D. Molecular dissection of the mycobacterial stringent response protein Rel. Protein Sci. 2006;15(6):1449–64. doi: 10.1110/ps.062117006 16731979.

56. Yang X, Ishiguro EE. Dimerization of the RelA protein of Escherichia coli. Biochem Cell Biol. 2001;79(6):729–36. doi: 10.1139/o01-144 11800013.

57. Schreiber G, Metzger S, Aizenman E, Roza S, Cashel M, Glaser G. Overexpression of the relA gene in Escherichia coli. J Biol Chem. 1991;266(6):3760–7. 1899866.

58. Yan X, Zhao C, Budin-Verneuil A, Hartke A, Rince A, Gilmore MS, et al. The (p)ppGpp synthetase RelA contributes to stress adaptation and virulence in Enterococcus faecalis V583. Microbiology. 2009;155(Pt 10):3226–37. doi: 10.1099/mic.0.026146-0 19608607.

59. Glasel JA. Validity of nucleic acid purities monitored by 260nm/280nm absorbance ratios. Biotechniques 1995, 18(1):62–62 7702855

60. Avarbock D, Salem J, Li LS, Wang ZM, Rubin H. Cloning and characterization of a bifunctional RelA/SpoT homologue from Mycobacterium tuberculosis. Gene. 1999;233(1–2):261–9. doi: 10.1016/s0378-1119(99)00114-6 10375643.

61. Heinemeyer EA, Richter D. Mechanism of the in vitro breakdown of guanosine 5'-diphosphate 3'-diphosphate in Escherichia coli. Proc Natl Acad Sci USA. 1978;75(9):4180–3. doi: 10.1073/pnas.75.9.4180 212739.

62. Heinemeyer EA, Geis M, Richter D. Degradation of guanosine 3'-diphosphate 5'-diphosphate in vitro by the spoT gene product of Escherichia coli. Eur J Biochem. 1978;89(1):125–31. doi: 10.1111/j.1432-1033.1978.tb20904.x 359325.

63. Sy J. In vitro degradation of guanosine 5'-diphosphate, 3'-diphosphate. Proc Natl Acad Sci USA. 1977;74(12):5529–33. doi: 10.1073/pnas.74.12.5529 414222.

64. Gajadeera CS, Zhang X, Wei Y, Tsodikov OV. Structure of inorganic pyrophosphatase from Staphylococcus aureus reveals conformational flexibility of the active site. J Struct Biol. 2015;189(2):81–6. doi: 10.1016/j.jsb.2014.12.003 25576794.

65. Steinchen W, Schuhmacher JS, Altegoer F, Fage CD, Srinivasan V, Linne U, et al. Catalytic mechanism and allosteric regulation of an oligomeric (p)ppGpp synthetase by an alarmone. Proc Natl Acad Sci USA. 2015;112(43):13348–53. doi: 10.1073/pnas.1505271112 26460002.

66. Cassels R, Oliva B, Knowles D. Occurrence of the regulatory nucleotides ppGpp and pppGpp following induction of the stringent response in staphylococci. J Bacteriol. 1995;177(17):5161–5. doi: 10.1128/jb.177.17.5161-5165.1995 7665499.

67. Geiger T, Goerke C, Fritz M, Schafer T, Ohlsen K, Liebeke M, et al. Role of the (p)ppGpp synthase RSH, a RelA/SpoT homolog, in stringent response and virulence of Staphylococcus aureus. Infect Immun. 2010;78(5):1873–83. doi: 10.1128/IAI.01439-09 20212088.

68. Gao W, Chua K, Davies JK, Newton HJ, Seemann T, Harrison PF, et al. Two novel point mutations in clinical Staphylococcus aureus reduce linezolid susceptibility and switch on the stringent response to promote persistent infection. PLoS Pathog. 2010;6(6):e1000944. doi: 10.1371/journal.ppat.1000944 20548948.

69. Mwangi MM, Kim C, Chung M, Tsai J, Vijayadamodar G, Benitez M, et al. Whole-genome sequencing reveals a link between beta-lactam resistance and synthetases of the alarmone (p)ppGpp in Staphylococcus aureus. Microb Drug Resist. 2013;19(3):153–9. doi: 10.1089/mdr.2013.0053 23659600.

70. Lemos JA, Brown TA Jr., Burne RA. Effects of RelA on key virulence properties of planktonic and biofilm populations of Streptococcus mutans. Infect Immun. 2004;72(3):1431–40. doi: 10.1128/IAI.72.3.1431-1440.2004 14977948.

71. Wendrich TM, Marahiel MA. Cloning and characterization of a relA/spoT homologue from Bacillus subtilis. Mol Microbiol. 1997;26(1):65–79. doi: 10.1046/j.1365-2958.1997.5511919.x 9383190.

72. Ruwe M, Ruckert C, Kalinowski J, Persicke M. Functional Characterization of a Small Alarmone Hydrolase in Corynebacterium glutamicum. Front Microbiol. 2018;9:916. doi: 10.3389/fmicb.2018.00916 29867827.

73. Ooga T, Ohashi Y, Kuramitsu S, Koyama Y, Tomita M, Soga T, et al. Degradation of ppGpp by nudix pyrophosphatase modulates the transition of growth phase in the bacterium Thermus thermophilus. J Biol Chem. 2009;284(23):15549–56. doi: 10.1074/jbc.M900582200 19346251.

74. Zhang Y, Zbornikova E, Rejman D, Gerdes K. Novel (p)ppGpp Binding and Metabolizing Proteins of Escherichia coli. mBio. 2018;9(2). doi: 10.1128/mBio.02188-17 29511080.

75. Sun D, Lee G, Lee JH, Kim HY, Rhee HW, Park SY, et al. A metazoan ortholog of SpoT hydrolyzes ppGpp and functions in starvation responses. Nat Struct Mol Biol. 2010;17(10):1188–94. doi: 10.1038/nsmb.1906 20818390.

76. Koonin EV. Yeast protein controlling inter-organelle communication is related to bacterial phosphatases containing the Hsp 70-type ATP-binding domain. Trends Biochem Sci. 1994;19(4):156–7. doi: 10.1016/0968-0004(94)90275-5 8016863.

77. Wang B, Dai P, Ding D, Del Rosario A, Grant RA, Pentelute BL, Laub MT. Affinity-based capture and identification of protein effectors of the growth regulator ppGpp. Nat Chem Biol. 2019;15(2):141–150. doi: 10.1038/s41589-018-0183-4 30559427.

78. Steinchen W, Bange G. The magic dance of the alarmones (p)ppGpp. Mol Microbiol. 2016;101(4):531–44. doi: 10.1111/mmi.13412 27149325.

79. Corrigan RM, Bellows LE, Wood A, Gründling A. ppGpp negatively impacts ribosome assembly affecting growth and antimicrobial tolerance in Gram-positive bacteria. Proc Natl Acad Sci USA. 2016;113(12):e1710–9. doi: 10.1073/pnas.1522179113 26951678.

80. Wood A, Irving SE, Bennison DJ, Corrigan RM. The (p)ppGpp-binding GTPase Era promotes rRNA processing and cold adaptation in Staphylococcus aureus. PLoS Genet. 2019;15(8):e1008346. doi: 10.1371/journal.pgen.1008346 31465450.

81. Mechold U, Potrykus K, Murphy H, Murakami KS, Cashel M. Differential regulation by ppGpp versus pppGpp in Escherichia coli. Nucleic Acids Res. 2013;41:6175–6189. doi: 10.1093/nar/gkt302 23620295.

82. Varik V, Oliveira SRA, Hauryliuk V, Tenson T. HPLC-based quantification of bacterial housekeeping nucleotides and alarmone messengers ppGpp and pppGpp. Sci Rep 2017;7:11022. doi: 10.1038/s41598-017-10988-6 28887466.

83. Liu K, Bittner AN, Wang JD. Diversity in (p)ppGpp metabolism and effectors. Curr Opin Microbiol. 2015;24:72–79. doi: 10.1016/j.mib.2015.01.012 25636134.

84. Wendrich TM, Marahiel MA. Cloning and characterization of a relA/spoT homologue from Bacillus subtilis. Mol Microbiol. 1997;26(1):65–79. doi: 10.1046/j.1365-2958.1997.5511919.x 9383190.

85. Okada Y, Makino S, Tobe T, Okada N, Yamazaki S. Cloning of rel from Listeria monocytogenes as an osmotolerance involvement gene. Appl Environ Microbiol. 2002;68(4):1541–7. doi: 10.1128/AEM.68.4.1541-1547.2002 11916666.

86. Nishino T, Gallant J, Shalit P, Palmer L, Wehr T. Regulatory nucleotides involved in the Rel function of Bacillus subtilis. J Bacteriol. 1979;140(2):671–9. 115847.

87. Pao CC, Gallant J. A new nucleotide involved in the stringent response in Escherichia coli. Guanosine 5'-diphosphate-3'-monophosphate. J Biol Chem. 1979;254(3):688–92. Epub 1979/02/10. 368059.

88. He P, Deng C, Liu B, Zeng L, Zhao W, Zhang Y, et al. Characterization of a bifunctional enzyme with (p)ppGpp-hydrolase/synthase activity in Leptospira interrogans. FEMS Microbiol Lett. 2013;348(2):133–42. doi: 10.1111/1574-6968.12279 24111633.

89. Kuroda M, Kuroda H, Oshima T, Takeuchi F, Mori H, Hiramatsu K. Two-component system VraSR positively modulates the regulation of cell-wall biosynthesis pathway in Staphylococcus aureus. Mol Microbiol. 2003;49(3):807–21. doi: 10.1046/j.1365-2958.2003.03599.x 12864861.

90. Bhawini A, Pandey P, Dubey AP, Zehra A, Nath G, Mishra MN. RelQ Mediates the Expression of β-Lactam Resistance in Methicillin-Resistant Staphylococcus aureus. Front Microbiol. 2019;10:339. doi: 10.3389/fmicb.2019.00339 30915038.

91. Matsuo M, Yamamoto N, Hishinuma T, Hiramatsu K. Identification of a Novel Gene Associated with High-Level β-Lactam Resistance in Heterogeneous Vancomycin-Intermediate Staphylococcus aureus Strain Mu3 and Methicillin-Resistant S. aureus Strain N315. Antimicrob Agents Chemother. 2019;63(2). doi: 10.1128/AAC.00712-18 30455230.

92. Hauryliuk V, Atkinson GC. Small Alarmone Synthetases as novel bacterial RNA-binding proteins. RNA Biol. 2017;14(12):1695–9. doi: 10.1080/15476286.2017.1367889 28820325.


Článek vyšel v časopise

PLOS One


2019 Číslo 10
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

KOST
Koncepce osteologické péče pro gynekology a praktické lékaře
nový kurz
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Svět praktické medicíny 5/2023 (znalostní test z časopisu)

Imunopatologie? … a co my s tím???
Autoři: doc. MUDr. Helena Lahoda Brodská, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#