Effect of caffeine ingestion on competitive rifle shooting performance


Autoři: Håvard Nygaard aff001;  Steinar Riksaasen aff001;  Leif Malvin Hjelmevoll aff001;  Endre Wold aff001
Působiště autorů: Department of health and exercise physiology, Inland Norway University of Applied Sciences, Lillehammer, Norway aff001
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224596

Souhrn

Purpose

The purpose of the present study was to test if caffeine ingestion affects rifle shooting accuracy in trained shooters.

Methods

Twenty trained shooters performed 4 shooting tests in a randomized, double-blinded, placebo controlled crossover design; 2 identical tests after placebo ingestion and 2 after ingestion of 300 mg caffeine. The tests consisted of 30 shots in prone position and 30 in standing position on a 10 ring electronic target, on a distance of 50 metres, without any time limit, at rest.

Results

Caffeine supplementation entailed a mean decrease in shooting performance by 11.8 points (95% CI: 6.7 to 17.0, effect size: 0.9). This was primarily a result of an 11.3 (95% CI: 7.2 to 15.4, effect size: 0.9) point decrease during shooting in standing position and not in prone position (0.6 point decrease, 95% CI: -2.1 to 3.2, effect size: 0.1).

Conclusions

We conclude that prior ingestion of 300 mg caffeine impairs rifle shooting accuracy in trained shooters when performed in standing but not in prone position.

Klíčová slova:

Beverages – Body weight – Caffeine – Cardiac muscles – Cognitive impairment – Heart rate – Ingestion – Sports


Zdroje

1. Evans J, Battisti AS. Caffeine. StatPearls. Treasure Island (FL): StatPearls Publishing StatPearls Publishing LLC.; 2018.

2. Del Coso J, Munoz G, Munoz-Guerra J. Prevalence of caffeine use in elite athletes following its removal from the World Anti-Doping Agency list of banned substances. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme. 2011;36(4):555–61. Epub 2011/08/23. doi: 10.1139/h11-052 21854160.

3. Baker LB, Nuccio RP, Jeukendrup AE. Acute effects of dietary constituents on motor skill and cognitive performance in athletes. Nutr Rev. 2014;72(12):790–802. Epub 2014/11/18. doi: 10.1111/nure.12157 25400063.

4. Grgic J, Mikulic P, Schoenfeld BJ, Bishop DJ, Pedisic Z. The Influence of Caffeine Supplementation on Resistance Exercise: A Review. Sports Med. 2018. Epub 2018/10/10. doi: 10.1007/s40279-018-0997-y 30298476.

5. Southward K, Rutherfurd-Markwick KJ, Ali A. Correction to: The Effect of Acute Caffeine Ingestion on Endurance Performance: A Systematic Review and Meta-Analysis. Sports Med. 2018. Epub 2018/08/11. doi: 10.1007/s40279-018-0967-4 30094798.

6. Ebrahimi M, Pordanjani AF, Ahmadabadi F. The effect of different doses of caffeine on cardiovascular variables and shooting performance. Biomedical Human Kinetics. 2015;7(1). doi: 10.1515/bhk-2015-0007

7. Lakie M. The influence of muscle tremor on shooting performance. Experimental physiology. 2010;95(3):441–50. Epub 2009/11/20. doi: 10.1113/expphysiol.2009.047555 19923157.

8. Franks HM, Hagedorn H, Hensley VR, Hensley WJ, Starmer GA. The effect of caffeine on human performance, alone and in combination with ethanol. Psychopharmacologia. 1975;45(2):177–81. Epub 1975/12/31. doi: 10.1007/bf00429058 1215448.

9. Gillingham R, Keefe AA, Keillor J, Tikuisis P. Effect of caffeine on target detection and rifle marksmanship. Ergonomics. 2003;46(15):1513–30. Epub 2003/12/12. doi: 10.1080/0014013032000121606 14668172.

10. Tikuisis P, Keefe AA, McLellan TM, Kamimori G. Caffeine restores engagement speed but not shooting precision following 22 h of active wakefulness. Aviation, space, and environmental medicine. 2004;75(9):771–6. Epub 2004/10/06. 15460628.

11. Gillingham RL, Keefe AA, Tikuisis P. Acute caffeine intake before and after fatiguing exercise improves target shooting engagement time. Aviation, space, and environmental medicine. 2004;75(10):865–71. Epub 2004/10/23. 15497366.

12. Tharion WJ, Shukitt-Hale B, Lieberman HR. Caffeine effects on marksmanship during high-stress military training with 72 hour sleep deprivation. Aviation, space, and environmental medicine. 2003;74(4):309–14. Epub 2003/04/12. 12688447.

13. Monaghan TP, Jacobson BH, Sellers JH, Estrada CA. Effects of Energy Beverage Consumption on Pistol Aiming Steadiness in Law Enforcement Officers. J Strength Cond Res. 2017;31(9):2557–61. Epub 2017/08/05. doi: 10.1519/JSC.0000000000002015 28777245.

14. Pomportes L, Brisswalter J, Hays A, Davranche K. Effects of Carbohydrate, Caffeine and Guarana on Cognitive Performance, Perceived Exertion and Shooting Performance in High Level Athletes. International journal of sports physiology and performance. 2018:1–26. Epub 2018/10/10. doi: 10.1123/ijspp.2017-0865 30300016.

15. Lakens D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Frontiers in psychology. 2013;4:863. doi: 10.3389/fpsyg.2013.00863 24324449; PubMed Central PMCID: PMC3840331.

16. Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Medicine and science in sports and exercise. 2009;41(1):3–13. doi: 10.1249/MSS.0b013e31818cb278 19092709.

17. Share B, Sanders N, Kemp J. Caffeine and performance in clay target shooting. Journal of sports sciences. 2009;27(6):661–6. doi: 10.1080/02640410902741068 19308789

18. Ihalainen S, Kuitunen S, Mononen K, Linnamo V. Determinants of elite-level air rifle shooting performance. Scandinavian journal of medicine & science in sports. 2016;26(3):266–74. Epub 2015/04/09. doi: 10.1111/sms.12440 25850700.

19. Ihalainen S, Laaksonen MS, Kuitunen S, Leppavuori A, Mikkola J, Lindinger SJ, et al. Technical determinants of biathlon standing shooting performance before and after race simulation. Scandinavian journal of medicine & science in sports. 2018;28(6):1700–7. Epub 2018/02/16. doi: 10.1111/sms.13072 29446507.

20. Ihalainen S, Linnamo V, Mononen K, Kuitunen S. Relation of Elite Rifle Shooters' Technique-Test Measures to Competition Performance. International journal of sports physiology and performance. 2016;11(5):671–7. Epub 2015/11/13. doi: 10.1123/ijspp.2015-0211 26559498.

21. Glaister M, Gissane C. Caffeine and Physiological Responses to Submaximal Exercise: A Meta-Analysis. International journal of sports physiology and performance. 2018;13(4):402–11. Epub 2017/09/06. doi: 10.1123/ijspp.2017-0312 28872376.

22. Daniels JW, Mole PA, Shaffrath JD, Stebbins CL. Effects of caffeine on blood pressure, heart rate, and forearm blood flow during dynamic leg exercise. Journal of applied physiology. 1998;85(1):154–9. Epub 1998/07/09. doi: 10.1152/jappl.1998.85.1.154 9655769.

23. Goncalves LS, Painelli VS, Yamaguchi G, Oliveira LF, Saunders B, da Silva RP, et al. Dispelling the myth that habitual caffeine consumption influences the performance response to acute caffeine supplementation. Journal of applied physiology. 2017;123(1):213–20. Epub 2017/05/13. doi: 10.1152/japplphysiol.00260.2017 28495846.

24. Azevedo R, Silva-Cavalcante MD, Gualano B, Lima-Silva AE, Bertuzzi R. Effects of caffeine ingestion on endurance performance in mentally fatigued individuals. European journal of applied physiology. 2016;116(11–12):2293–303. Epub 2016/10/04. doi: 10.1007/s00421-016-3483-y 27695980.

25. Spriet LL. Exercise and sport performance with low doses of caffeine. Sports Med. 2014;44 Suppl 2:S175–84. Epub 2014/10/31. doi: 10.1007/s40279-014-0257-8 25355191; PubMed Central PMCID: PMC4213371.


Článek vyšel v časopise

PLOS One


2019 Číslo 10