Integrating continuous differential evolution with discrete local search for meander line RFID antenna design


Autoři: James Montgomery aff001;  Marcus Randall aff002;  Andrew Lewis aff003
Působiště autorů: School of Technology, Environments and Design, University of Tasmania, Hobart, Tasmania, Australia aff001;  Bond Business School, Bond University, Gold Coast, Australia aff002;  School of Information and Communication Technology, Griffith University, Nathan, Australia aff003
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223194

Souhrn

The automated design of meander line RFID antennas is a discrete self-avoiding walk (SAW) problem for which efficiency is to be maximized while resonant frequency is to be minimized. This work presents a novel exploration of how discrete local search may be incorporated into a continuous solver such as differential evolution (DE). A prior DE algorithm for this problem that incorporates an adaptive solution encoding and a bias favoring antennas with low resonant frequency is extended by the addition of the backbite local search operator and a variety of schemes for reintroducing modified designs into the DE population. The algorithm is extremely competitive with an existing ACO approach and the technique is transferable to other SAW problems and other continuous solvers. The findings indicate that careful reintegration of discrete local search results into the continuous population is necessary for effective performance.

Klíčová slova:

Algorithms – Antennas – Archives – Employment – Evolutionary algorithms – Optimization – Species diversity – Resonance frequency


Zdroje

1. Stockman H. Communication by means of reflected power. In: Proceedings of the Institute of Radio Engineers; 1948. p. 1196–1204.

2. Hong Kong International Airport. HKIA Boosts Baggage Handling Efficiency with RFID Technology; 2008. http://www.hongkongairport.com/eng/media/press-releases/pr_914.html [Accessed 19/1/2011].

3. Keskilammi M, Sydänheimo L, Kivikoski M. Radio Frequency Technology for Automated Manufacturing and Logistics Control. Part 1: Passive RFID Systems and the Effects of Antenna Parameters on Operational Distance. The International Journal of Advanced Manufacturing Technology. 2003;21(10):769–774. doi: 10.1007/s00170-002-1392-1

4. Seshagiri Rao K, Nikitin P, Lam S. Antenna design for UHF RFID tags: A review and a practical application. IEEE Transactions on Antenna Propagation. 2005;53:3870–3876. doi: 10.1109/TAP.2005.859919

5. Gustafsson M, Sohl C, Kristensson G. Physical limitations on antennas of arbitrary shape. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 2007;463:2589–2607. doi: 10.1098/rspa.2007.1893

6. Galehdar A, Thiel D, O’Keefe S, Kingsley S. Efficiency variations in electrically small, meander line RFID antennas. In: Proceedings of IEEE Antenna Propagation Symposium; 2007. p. 2273–2276.

7. Gomez-Meneses P, Randall M, Lewis A. A Multi-Objective Extremal Optimisation Approach Applied to RFID Antenna Design. In: Schutze O, editor. EVOLVE—A bridge between probability, set orientated numerics, and evolutionary computation II. vol. 175 of Advances in Intelligent and Soft Computing. Berlin: Springer; 2012. p. 431–446.

8. Montgomery J, Randall M, Lewis A. Differential evolution for RFID antenna design: A comparison with ant colony optimisation. In: Genetic and Evolutionary Computation Conference (GECCO-2011). Dublin, Ireland; 2011. p. 673–680.

9. Montgomery J, Randall M, Lewis A. Extending the front: Designing RFID antennas using multiobjective differential evolution with biased population selection. In: Proceedings of the 14th International Conference on Computational Science. Cairns, Australia; 2014. p. 1893–1903.

10. Lewis A, Weis G, Randall M, Galehdar A, Thiel D. Optimising efficiency and gain of small meander line RFID antennas using ant colony system. In: Proceedings of the Congress on Evolutionary Computation; 2009. p. 1486–1492.

11. Randall M, Lewis A, Galehdar A, Thiel D. Using ant colony optimisation to improve the efficiency of small meander line RFID antennas. In: Proceedings of the 3rd IEEE International e-Science and Grid Computing Conference; 2007. p. 345–351.

12. Weis G, Lewis A, Randall M, Galehdar A, Thiel D. Local search for ant colony system to improve the efficiency of small meander line RFID antennas. In: Proceedings of the IEEE Congress on Evolutionary Computation; 2008. p. 1708–1713.

13. Weis G, Lewis A, Randall M, Galehdar A, Thiel D. Pheromone pre-seeding for the construction of RFID antenna structures using ACO. In: Proceedings of the IEEE 6th International Conference on e-Science; 2010. p. 161–167.

14. Burke G, Poggio A, Logan J, Rockway J. NEC—Numerical electromagnetics code for antennas and scattering. In: Antennas and Propagation Society International Symposium; 1979. p. 147–150.

15. Oberdorf R, Ferguson A, Jacobsen J, Kondev J. Secondary structures in long compact polymers. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics). 2006;74(5):051801. doi: 10.1103/PhysRevE.74.051801

16. Sokal A. Monte Carlo methods for the self-avoiding walk. Monte Carlo and Molecular Dynamics Simulations in Polymer Science. 1994; p. 47–124.

17. Dorigo M, Stützle T. Ant Colony Optimization. MIT Press; 2004.

18. Deb K. Multi-Objective optimization using evolutionary algorithms. Wiley; 2002.

19. Hettenhausen J, Lewis A, Thiel D, Shahpari M. An investigation of the performance limits of small, planar antennas using optimisation. In: Proceedings of the International Conference on Computational Science. Reykjavík, Iceland; 2015. p. 2307–2316.

20. Price K, Storn R, Lampinen J. Differential evolution: A practical approach to global optimization. Berlin: Springer; 2005.

21. Montgomery J. Representation matters: Real-valued encodings for meander line RFID antennas. In: Proceedings of the IEEE Congress on Evolutionary Computation. Sendai, Japan: IEEE; 2015. p. 1303–1310.

22. Ashlock D, Montgomery J. An adaptive generative representation for evolutionary computation. In: Proceedings of the IEEE Congress on Evolutionary Computation. Vancouver, Canada; 2016. p. 1578–1585.

23. Deb K, Pratap A, Agarwal S, Meyarivan T. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. IEEE Transactions on Evolutionary Computation. 2002;6(2):182–197. doi: 10.1109/4235.996017

24. Mezura-Montes E, Reyes-Sierra M, Coello Coello C. Multi-objective optimization using differential evolution: A survey of the state-of-the-art. In: Chakraborty U, editor. Advances in Differential Evolution. vol. 143 of Studies in Computational Intelligence. Springer; 2008. p. 173–196.

25. Madavan N. Multiobjective optimization using a Pareto differential evolution approach. In: Proceedings of the IEEE Congress on Evolutionary Computation. vol. 2. IEEE Press; 2002. p. 1145–1150.

26. Xue F, Sanderson A, Graves R. Pareto-based multi-objective differential evolution. In: Proceedings of the IEEE Congress on Evolutionary Computation. vol. 2. Canberra, Australia: IEEE Press; 2003. p. 862–869.

27. Iorio A, Li X. Solving rotated multi-objective optimization problems using differential evolution. In: Advances in Artificial Intelligence. vol. 3339 of Lecture Notes in Artificial Intelligence. Springer-Verlag; 2004. p. 861–872.

28. Pampara G, Engelbrecht AP, Franken N. Binary Differential Evolution. In: 2006 IEEE Conference on Evolutionary Computation; 2006. p. 1873–1879.

29. Kennedy J, Eberhart RC. A Discrete Binary Version of the Particle Swarm Algorithm. In: 1997 IEEE International Conference on Systems, Man, and Cybernetics. vol. 5; 1997. p. 4104–4108 vol.5.

30. Onwubolu G, Davendra D, editors. Differential evolution: A handbook for global permutation-Based combinatorial optimization. vol. 175 of Studies in Computational Intelligence. Springer; 2009.

31. Montgomery J, Ashlock D. Applying the biased form of the adaptive generative Representation. In: Proceedings of the IEEE Congress on Evolutionary Computation. San Sebastian, Spain; 2017. p. 1079–1086.

32. Mezura-Montes E, Velázquez-Reyes J, Coello Coello C. A comparative study of differential evolution variants for global optimization. In: Genetic and Evolutionary Computation Conference. Seattle, Washington, USA; 2006. p. 485–492.

33. Zitzler E, Brockhoff D, Thiele L. The hypervolume indicator revisited: On the design of Pareto-compliant indicators via weighted integration. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T, editors. Proceedings of Evolutionary Multi-Criterion Optimization. vol. 4403 of Lecture Notes in Computer Science. Springer; 2007. p. 862–876.

34. Friedrich T, Kroeger T, Neumann F. Weighted preferences in evolutionary multi-objective optimization. In: Wang D, Reynolds M, editors. Advances in Artificial Intelligence. vol. 7106 of Lecture Notes in Computer Science. Springer; 2011. p. 291–300.

35. Zitzler E, Thiele L. Multiobjective optimization using evolutionary algorithms—A comparative case study. In: Eiben AE, Bäck T, Schoenauer M, Schwefel HP, editors. Proceedings of the 5th International Conference on Parallel Problem Solving from Nature. Berlin, Germany; 1998. p. 292–301.

36. ISO Central Secretary. Information technology—Radio frequency identification for item management—Part 6: Parameters for air interface communications at 860 MHz to 960 MHz General. Geneva, CH: International Organization for Standardization; 2013.

37. ISO Central Secretary. Information technology—Radio frequency identification for item management—Part 7: Parameters for active air interface communications at 433 MHz. Geneva, CH: International Organization for Standardization; 2014.

38. Coello Coello C, Salazar Lechuga M. MOPSO: A Proposal for Multiple Objective Particle Swarm Optimization. In: IEEE Congress on Evolutionary Computation (CEC 2002); 2002. p. 1051–1056.


Článek vyšel v časopise

PLOS One


2019 Číslo 10