Liquid biopsies for omics-based analysis in sentinel mussels

Autoři: France Caza aff001;  Philippine Granger Joly de Boissel aff001;  Richard Villemur aff001;  Stéphane Betoulle aff002;  Yves St-Pierre aff001
Působiště autorů: INRS-Institut Armand-Frappier, Laval, Québec, Canada aff001;  Université Reims Champagne-Ardenne, UMR-I 02 SEBIO, Stress environnementaux et Biosurveillance des milieux aquatiques, Reims, France aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223525


Liquid biopsy of plasma is a simple and non-invasive technology that holds great promise in biomedical research. It is based on the analysis of nucleic acid-based biomarkers with predictive potential. In the present work, we have combined this concept with the FTA technology for sentinel mussels. We found that hemocytes collected from liquid biopsies can be readily fixed on FTA cards and used for long-term transcriptome analysis. We also showed that liquid biopsy is easily adaptable for metagenomic analysis of bacterial profiles of mussels. We finally provide evidence that liquid biopsies contained circulating cell-free DNA (ccfDNA) which can be used as an easily accessible genomic reservoir. Sampling of FTA-fixed circulating nucleic acids is stable at room temperature and does not necessitate a cold-chain protection. It showed comparable performance to frozen samples and is ideally adapted for sampling in remote areas, most notably in polar regions threatened by anthropogenic activities. From an ethical point of view, this minimally-invasive and non-lethal approach further reduces incidental mortality associated with conventional tissue sampling. This liquid biopsy-based approach should thus facilitate biobanking activities and development of omics-based biomarkers in mussels to assess the quality of aquatic ecosystems.

Klíčová slova:

Bacteria – Biomarkers – Biopsy – Microbiome – Nucleic acids – RNA extraction – Mussels – Hemocytes


1. Beyer J, Green NW, Brooks S, Allan IJ, Ruus A, Gomes T, et al. Blue mussels (Mytilus edulis spp.) as sentinel organisms in coastal pollution monitoring: a review. Marine environmental research. 2017 Sep 1;130:338–65. doi: 10.1016/j.marenvres.2017.07.024 28802590

2. Bodin N, Burgeot T, Stanisiere JY, Bocquené G, Menard D, Minier C, et al. Seasonal variations of a battery of biomarkers and physiological indices for the mussel Mytilus galloprovincialis transplanted into the northwest Mediterranean Sea. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 2004 Aug 1;138(4):411–27.

3. Dondero F, Dagnino A, Jonsson H, Caprì F, Gastaldi L, Viarengo A. Assessing the occurrence of a stress syndrome in mussels (Mytilus edulis) using a combined biomarker/gene expression approach. Aquatic Toxicology. 2006 Jun 1;78:S13–24. doi: 10.1016/j.aquatox.2006.02.025 16644027

4. Farcy E, Burgeot T, Haberkorn H, Auffret M, Lagadic L, Allenou JP, et al. An integrated environmental approach to investigate biomarker fluctuations in the blue mussel Mytilus edulis L. in the Vilaine estuary, France. Environmental Science and Pollution Research. 2013 Feb 1;20(2):630–50. doi: 10.1007/s11356-012-1316-z 23247516

5. Berg DJ, Haag WR, Guttman SI, Sickel JB. Mantle biopsy: a technique for nondestructive tissue-sampling of freshwater mussels. Journal of the North American Benthological Society. 1995 Dec 1;14(4):577–81.

6. Mioduchowska M, Kaczmarczyk A, Zając K, Zając T, Sell J. Gender-associated mitochondrial DNA heteroplasmy in somatic tissues of the endangered freshwater mussel Unio crassus (Bivalvia: Unionidae): implications for sex identification and phylogeographical studies. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology. 2016 Nov;325(9):610–25.

7. Lacoursière‐Roussel A, Howland K, Normandeau E, Grey EK, Archambault P, Deiner K, et al. eDNA metabarcoding as a new surveillance approach for coastal Arctic biodiversity. Ecology and evolution. 2018 Aug;8(16):7763–77. doi: 10.1002/ece3.4213 30250661

8. da Cunha Santos G. FTA Cards for Preservation of Nucleic Acids for Molecular Assays: A Review on the Use of Cytologic/Tissue Samples. Archives of pathology & laboratory medicine. 2018 Mar;142(3):308–12.

9. Muthukrishnan M, Singanallur NB, Ralla K, Villuppanoor SA. Evaluation of FTA® cards as a laboratory and field sampling device for the detection of foot-and-mouth disease virus and serotyping by RT-PCR and real-time RT-PCR. Journal of virological methods. 2008 Aug 1;151(2):311–6. doi: 10.1016/j.jviromet.2008.05.020 18584888

10. Liang X, Chigerwe M, Hietala SK, Crossley BM. Evaluation of Fast Technology Analysis (FTA) Cards as an improved method for specimen collection and shipment targeting viruses associated with Bovine Respiratory Disease Complex. Journal of virological methods. 2014 Jun 15;202:69–72. doi: 10.1016/j.jviromet.2014.02.022 24657552

11. Tam KI, Esona MD, Williams A, Ndze VN, Boula A, Bowen MD. Evaluation of BBL™ Sensi-Discs™ and FTA® cards as sampling devices for detection of rotavirus in stool samples. Journal of virological methods. 2015 Sep 15;222:41–6. doi: 10.1016/j.jviromet.2015.05.007 26022083

12. Fan HC, Blumenfeld YJ, Chitkara U, Hudgins L, Quake SR. Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proceedings of the National Academy of Sciences. 2008 Oct 21;105(42):16266–71.

13. Snyder MW, Kircher M, Hill AJ, Daza RM, Shendure J. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell. 2016 Jan 14;164(1–2):57–68. doi: 10.1016/j.cell.2015.11.050 26771485

14. Gilbert JA, Quinn RA, Debelius J, Xu ZZ, Morton J, Garg N, et al. Microbiome-wide association studies link dynamic microbial consortia to disease. Nature. 2016 Jul;535(7610):94. doi: 10.1038/nature18850 27383984

15. Guglielmi G. How gut microbes are joining the fight against cancer. Nature. 2018 May;557(7706):482. doi: 10.1038/d41586-018-05208-8 29795257

16. Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, et al. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science. 2018 Jan 5;359(6371):97–103. doi: 10.1126/science.aan4236 29097493

17. Apprill A. Marine animal microbiomes: toward understanding host–microbiome interactions in a changing ocean. Frontiers in Marine Science. 2017 Jul 18;4:222.

18. Vezzulli L, Stagnaro L, Grande C, Tassistro G, Canesi L, Pruzzo C. Comparative 16SrDNA gene-based microbiota profiles of the Pacific oyster (Crassostrea gigas) and the Mediterranean mussel (Mytilus galloprovincialis) from a shellfish farm (Ligurian Sea, Italy). Microbial ecology. 2018 Feb 1;75(2):495–504. doi: 10.1007/s00248-017-1051-6 28803409

19. Caza F, Betoulle S, Auffret M, Brousseau P, Fournier M, St-Pierre Y. Comparative analysis of hemocyte properties from Mytilus edulis desolationis and Aulacomya ater in the Kerguelen Islands. Marine environmental research. 2015 Sep 1;110:174–82. doi: 10.1016/j.marenvres.2015.09.003 26382607

20. Gustafson LL, Stoskopf MK, Bogan AE, Showers W, Kwak TJ, Hanlon S, et al. Evaluation of a nonlethal technique for hemolymph collection in Elliptio complanata, a freshwater bivalve (Mollusca: Unionidae). Diseases of aquatic organisms. 2005 Jun 30;65(2):159–65. doi: 10.3354/dao065159 16060269

21. Chiminqgi M, Moutereau S, Pernet P, Conti M, Barbu V, Lemant J, et al. Specific real-time PCR vs. fluorescent dyes for serum free DNA quantification. Clinical Chemical Laboratory Medicine. 2007 Aug 1;45(8):993–5.

22. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods. 2001 Dec 1;25(4):402–8. doi: 10.1006/meth.2001.1262 11846609

23. Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC biology. 2014 Dec;12(1):87.

24. Tanguy M, McKenna P, Gauthier-Clerc S, Pellerin J, Danger JM, Siah A. Sequence analysis of a normalized cDNA library of Mytilus edulis hemocytes exposed to Vibrio splendidus LGP32 strain. Results in immunology. 2013 Jan 1;3:40–50. doi: 10.1016/j.rinim.2013.04.001 24600557

25. Moreira R, Pereiro P, Canchaya C, Posada D, Figueras A, Novoa B. RNA-Seq in Mytilus galloprovincialis: comparative transcriptomics and expression profiles among different tissues. BMC genomics. 2015 Dec;16(1):728.

26. Detree C, Núñez-Acuña G, Roberts S, Gallardo-Escárate C. Uncovering the complex transcriptome response of Mytilus chilensis against saxitoxin: implications of harmful algal blooms on mussel populations. PloS one. 2016 Oct 20;11(10):e0165231. doi: 10.1371/journal.pone.0165231 27764234

27. Dong W, Chen Y, Lu W, Wu B, Qi P. Transcriptome analysis of Mytilus coruscus hemocytes in response to Vibrio alginnolyficus infection. Fish & shellfish immunology. 2017 Nov 1;70:560–7.

28. de Boissel PG, Fournier M, Rodriguez-Lecompte JC, McKenna P, Kibenge F, Siah A. Functional and molecular responses of the blue mussel Mytilus edulis' hemocytes exposed to cadmium-An in vitro model and transcriptomic approach. Fish & shellfish immunology. 2017 Aug 1;67:575–85.

29. Chomczynski P, Sacchi N. The single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction: twenty-something years on. Nature protocols. 2006 Aug;1(2):581. doi: 10.1038/nprot.2006.83 17406285

30. Bourlat SJ, Borja A, Gilbert J, Taylor MI, Davies N, Weisberg SB, et al. Genomics in marine monitoring: new opportunities for assessing marine health status. Marine pollution bulletin. 2013 Sep 15;74(1):19–31. doi: 10.1016/j.marpolbul.2013.05.042 23806673

31. Carugati L, Corinaldesi C, Dell'Anno A, Danovaro R. Metagenetic tools for the census of marine meiofaunal biodiversity: an overview. Marine Genomics. 2015 Dec 1;24:11–20. doi: 10.1016/j.margen.2015.04.010 25957694

32. Dawson SJ. Characterizing the Cancer Genome in Blood. Cold Spring Harbor perspectives in medicine. 2018 May 29:a026880.

33. Cubero-Leon E, Ciocan CM, Minier C, Rotchell JM. Reference gene selection for qPCR in mussel, Mytilus edulis, during gametogenesis and exogenous estrogen exposure. Environmental Science and Pollution Research. 2012 Aug 1;19(7):2728–33.

34. Diaz LA Jr, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. Journal of clinical oncology. 2014 Feb 20;32(6):579. doi: 10.1200/JCO.2012.45.2011 24449238

35. De Vlaminck I, Martin L, Kertesz M, Patel K, Kowarsky M, Strehl C, et al. Noninvasive monitoring of infection and rejection after lung transplantation. Proceedings of the National Academy of Sciences. 2015 Oct 27;112(43):13336–41.

36. Huttunen R, Kuparinen T, Jylhävä J, Aittoniemi J, Vuento R, Huhtala H, et al. Fatal outcome in bacteremia is characterized by high plasma cell free DNA concentration and apoptotic DNA fragmentation: a prospective cohort study. PloS one. 2011 Jul 1;6(7):e21700. doi: 10.1371/journal.pone.0021700 21747948

37. Forsblom E, Aittoniemi J, Ruotsalainen E, Helmijoki V, Huttunen R, Jylhävä J, et al. High cell-free DNA predicts fatal outcome among Staphylococcus aureus bacteraemia patients with intensive care unit treatment. PloS one. 2014 Feb 10;9(2):e87741. doi: 10.1371/journal.pone.0087741 24520336

38. Potgieter M, Bester J, Kell DB, Pretorius E. The dormant blood microbiome in chronic, inflammatory diseases. FEMS microbiology reviews. 2015 May 4;39(4):567–91. doi: 10.1093/femsre/fuv013 25940667

39. Qian Y, Yang X, Xu S, Wu C, Qin N, Chen SD, et al. Detection of Microbial 16S rRNA Gene in the Blood of Patients With Parkinson’s Disease. Frontiers in aging neuroscience. 2018;10.

40. Lokmer A, Wegner KM. Hemolymph microbiome of Pacific oysters in response to temperature, temperature stress and infection. The ISME journal. 2015 Mar;9(3):670. doi: 10.1038/ismej.2014.160 25180968

41. Evans FF, Egan S, Kjelleberg S. Ecology of type II secretion in marine gammaproteobacteria. Environmental microbiology. 2008 May;10(5):1101–7. doi: 10.1111/j.1462-2920.2007.01545.x 18218035

42. Jensen S, Duperron S, Birkeland NK, Hovland M. Intracellular Oceanospirillales bacteria inhabit gills of Acesta bivalves. FEMS microbiology ecology. 2010 Dec 1;74(3):523–33. doi: 10.1111/j.1574-6941.2010.00981.x 21044098

43. Gosink JJ, Woese CR, Staley JT. Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov. and P. filamentus sp. nov., gas vacuolate polar marine bacteria of the Cytophaga-Flavobacterium-Bacteroides group and reclassification of ‘Flectobacillus glomeratus’ as Polaribacter glomeratus comb. nov. International Journal of Systematic and Evolutionary Microbiology. 1998 Jan 1;48(1):223–35.

44. Rubin-Blum M, Antony CP, Borowski C, Sayavedra L, Pape T, Sahling H, et al. Short-chain alkanes fuel mussel and sponge Cycloclasticus symbionts from deep-sea gas and oil seeps. Nature microbiology. 2017 Aug;2(8):17093.

45. Hedlund BP, Geiselbrecht AD, Bair TJ, Staley JT. Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov., sp. nov. Appl. Environ. Microbiol. 1999 Jan 1;65(1):251–9. 9872786

46. Sultan M, Amstislavskiy V, Risch T, Schuette M, Dökel S, Ralser M, et al. Influence of RNA extraction methods and library selection schemes on RNA-seq data. BMC genomics. 2014 Dec;15(1):675.

47. Costello M, Beard KH, Corlett RT, Cumming GS, Devictor V, Loyola R, et al. 2016. Field work ethics in biological research.

Článek vyšel v časopise


2019 Číslo 10