Azithromycin non-susceptible Shigella circulating in Israel, 2014–2016


Autoři: Analía V. Ezernitchi aff001;  Elizabeta Sirotkin aff001;  Dana Danino aff002;  Vered Agmon aff001;  Lea Valinsky aff001;  Assaf Rokney aff001
Působiště autorů: Government Central Laboratories, Ministry of Health, Jerusalem, Israel aff001;  Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer Sheva, Israel aff002;  Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel aff003
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0221458

Souhrn

Shigella species remains a major diarrhoeagenic agent, affecting mostly children, with global high incidence and high mortality rate specially in developing areas. Although azithromycin is recommended for treatment of shigellosis, there are currently no CLSI susceptibility breakpoints, accordingly no routine antimicrobial susceptibility test is performed in the clinical laboratory. The purpose of this study was to estimate the prevalence, resistance profile and molecular epidemiology of azithromycin non-susceptible Shigella strains in Israel during a three year period. Shigella isolates (n = 1,170) referred to the National Reference Center during 2014–2016, were included in this study. Serotyping was performed by slide agglutination. Resistance genes, mph(A) and erm(B), were identified by PCR and the phenotype profile was determined by broth microdilution (BMD). Genetic relatedness was assessed by wgMLST. Decreased susceptibility to azithromycin (DSA) phenotype and genotype were detected in various Shigella species and serotypes related to diverse genetic backgrounds and antimicrobial profiles: 6% (26/423) of Shigella flexneri and 2% (16/747) of Shigella sonnei displayed DSA (MIC16 mg/L). Correlation of this phenotype with the presence of mph(A) and erm(B) genes was confirmed. All DSA-strains displayed resistance to ≥3 different antimicrobial classes. Among DSA-strains, 14% were resistant to quinolones and 5% displayed resistance to ceftriaxone. Most of these strains (32/42) were isolated from children in the southern and central regions of Israel. Clonality and significant relatedness was confirmed by PFGE and wgMLST. The presence of macrolide resistance genes among the different species and lineages reflects the transmissible nature of these genes. The emergence of DSA-Shigella reinforces the necessity to establish clinical breakpoints that would warrant routine testing, reporting and surveillance for this drug of choice.

Klíčová slova:

Antimicrobial resistance – Comparative genomics – Israel – Polymerase chain reaction – Shigella – Streptomycin – Shigella flexneri – Shigellosis


Zdroje

1. Kotloff KL, Winickoff JP, Ivanoff B, Clemens JD, Swerdlow DL, Sansonetti PJ, et al. Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bulletin of the World Health Organization. 1999;77(8):651–66. Epub 1999/10/12. 10516787; PubMed Central PMCID: PMC2557719.

2. Collaborators GBDDD. Estimates of global, regional, and national morbidity, mortality, and aetiologies of diarrhoeal diseases: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet Infectious diseases. 2017;17(9):909–48. Epub 2017/06/06. doi: 10.1016/S1473-3099(17)30276-1 28579426; PubMed Central PMCID: PMC5589208.

3. Bardhan P, Faruque AS, Naheed A, Sack DA. Decrease in shigellosis-related deaths without Shigella spp.-specific interventions, Asia. Emerging infectious diseases. 2010;16(11):1718–23. Epub 2010/10/30. doi: 10.3201/eid1611.090934 21029529; PubMed Central PMCID: PMC3294502.

4. Cohen D, Bassal R, Goren S, Rouach T, Taran D, Schemberg B, et al. Recent trends in the epidemiology of shigellosis in Israel. Epidemiology and infection. 2014;142(12):2583–94. Epub 2014/02/25. doi: 10.1017/S0950268814000260 24559503.

5. DuPont HL, Levine MM, Hornick RB, Formal SB. Inoculum size in shigellosis and implications for expected mode of transmission. The Journal of infectious diseases. 1989;159(6):1126–8. Epub 1989/06/01. doi: 10.1093/infdis/159.6.1126 2656880.

6. Organization WH. Guidelines for the control of shigellosis, including epidemics due to Shigella dysenteriae type 1. 2005.

7. Williams PCM, Berkley JA. Guidelines for the treatment of dysentery (shigellosis): a systematic review of the evidence. Paediatrics and international child health. 2018;38(sup1):S50–S65. Epub 2018/05/24. doi: 10.1080/20469047.2017.1409454 29790845; PubMed Central PMCID: PMC6021764.

8. Murray K, Reddy V, Kornblum JS, Waechter H, Chicaiza LF, Rubinstein I, et al. Increasing Antibiotic Resistance in Shigella spp. from Infected New York City Residents, New York, USA. Emerging infectious diseases. 2017;23(2):332–5. Epub 2017/01/19. doi: 10.3201/eid2302.161203 28098543; PubMed Central PMCID: PMC5324786.

9. Heiman KE, Grass JE, Sjolund-Karlsson M, Bowen A. Shigellosis with decreased susceptibility to azithromycin. The Pediatric infectious disease journal. 2014;33(11):1204–5. Epub 2014/11/02. doi: 10.1097/INF.0000000000000397 25361413; PubMed Central PMCID: PMC4700834.

10. Mook P, McCormick J, Bains M, Cowley LA, Chattaway MA, Jenkins C, et al. ESBL-Producing and Macrolide-Resistant Shigella sonnei Infections among Men Who Have Sex with Men, England, 2015. Emerging infectious diseases. 2016;22(11):1948–52. Epub 2016/10/22. doi: 10.3201/eid2211.160653 27767929; PubMed Central PMCID: PMC5088027.

11. Valcanis M, Brown JD, Hazelton B, O'Sullivan MV, Kuzevski A, Lane CR, et al. Outbreak of locally acquired azithromycin-resistant Shigella flexneri infection in men who have sex with men. Pathology. 2015;47(1):87–8. Epub 2014/12/05. doi: 10.1097/PAT.0000000000000207 25474524.

12. Brown JD, Willcox SJ, Franklin N, Hazelton B, Howard P, Reinten T, et al. Shigella species epidemiology and antimicrobial susceptibility: the implications of emerging azithromycin resistance for guiding treatment, guidelines and breakpoints. The Journal of antimicrobial chemotherapy. 2017;72(11):3181–6. Epub 2017/09/30. doi: 10.1093/jac/dkx268 28961759.

13. Ma Q, Xu X, Luo M, Wang J, Yang C, Hu X, et al. A Waterborne Outbreak of Shigella sonnei with Resistance to Azithromycin and Third-Generation Cephalosporins in China in 2015. Antimicrobial agents and chemotherapy. 2017;61(6). Epub 2017/04/05. doi: 10.1128/AAC.00308-17 28373192; PubMed Central PMCID: PMC5444132.

14. Noguchi N, Emura A, Matsuyama H, O'Hara K, Sasatsu M, Kono M. Nucleotide sequence and characterization of erythromycin resistance determinant that encodes macrolide 2'-phosphotransferase I in Escherichia coli. Antimicrobial agents and chemotherapy. 1995;39(10):2359–63. Epub 1995/10/01. doi: 10.1128/aac.39.10.2359 8619599; PubMed Central PMCID: PMC162946.

15. Leclercq R. Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2002;34(4):482–92. Epub 2002/01/18. doi: 10.1086/324626 11797175.

16. WH E. Edward and Ewing's Identification of Enterobacteriaceae. 4th ed. New York: Elsevier 1986.

17. Sutcliffe J, Tait-Kamradt A, Wondrack L. Streptococcus pneumoniae and Streptococcus pyogenes resistant to macrolides but sensitive to clindamycin: a common resistance pattern mediated by an efflux system. Antimicrobial agents and chemotherapy. 1996;40(8):1817–24. Epub 1996/08/01. 8843287; PubMed Central PMCID: PMC163423.

18. Ojo KK, Ulep C, Van Kirk N, Luis H, Bernardo M, Leitao J, et al. The mef(A) gene predominates among seven macrolide resistance genes identified in gram-negative strains representing 13 genera, isolated from healthy Portuguese children. Antimicrobial agents and chemotherapy. 2004;48(9):3451–6. Epub 2004/08/26. doi: 10.1128/AAC.48.9.3451-3456.2004 15328110; PubMed Central PMCID: PMC514787.

19. CDC. CDC. National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS): Human Isolates Surveillance Report for 2015 (Final Report). Atlanta, Georgia: US CDC; 2018.

20. Chattaway MA, Schaefer U, Tewolde R, Dallman TJ, Jenkins C. Identification of Escherichia coli and Shigella Species from Whole-Genome Sequences. Journal of clinical microbiology. 2017;55(2):616–23. Epub 2016/12/16. doi: 10.1128/JCM.01790-16 27974538; PubMed Central PMCID: PMC5277532.

21. Baker KS, Dallman TJ, Field N, Childs T, Mitchell H, Day M, et al. Genomic epidemiology of Shigella in the United Kingdom shows transmission of pathogen sublineages and determinants of antimicrobial resistance. Scientific reports. 2018;8(1):7389. Epub 2018/05/11. doi: 10.1038/s41598-018-25764-3 29743642; PubMed Central PMCID: PMC5943296.

22. Connor TR, Barker CR, Baker KS, Weill FX, Talukder KA, Smith AM, et al. Species-wide whole genome sequencing reveals historical global spread and recent local persistence in Shigella flexneri. eLife. 2015;4:e07335. Epub 2015/08/05. doi: 10.7554/eLife.07335 26238191; PubMed Central PMCID: PMC4522646.

23. Baker KS, Dallman TJ, Ashton PM, Day M, Hughes G, Crook PD, et al. Intercontinental dissemination of azithromycin-resistant shigellosis through sexual transmission: a cross-sectional study. The Lancet Infectious diseases. 2015;15(8):913–21. Epub 2015/05/06. doi: 10.1016/S1473-3099(15)00002-X 25936611.

24. Liao YS, Liu YY, Lo YC, Chiou CS. Azithromycin-Nonsusceptible Shigella flexneri 3a in Men Who Have Sex with Men, Taiwan, 2015–2016. Emerging infectious diseases. 2016;23(2):345–6. Epub 2017/01/19. doi: 10.3201/eid2302.161260 28098533; PubMed Central PMCID: PMC5324798.

25. Baker KS, Dallman TJ, Behar A, Weill FX, Gouali M, Sobel J, et al. Travel- and Community-Based Transmission of Multidrug-Resistant Shigella sonnei Lineage among International Orthodox Jewish Communities. Emerging infectious diseases. 2016;22(9):1545–53. Epub 2016/08/18. doi: 10.3201/eid2209.151953 27532625; PubMed Central PMCID: PMC4994374.

26. Baker KS, Dallman TJ, Field N, Childs T, Mitchell H, Day M, et al. Horizontal antimicrobial resistance transfer drives epidemics of multiple Shigella species. Nature communications. 2018;9(1):1462. Epub 2018/04/15. doi: 10.1038/s41467-018-03949-8 29654279; PubMed Central PMCID: PMC5899146.

27. Argimon S, Abudahab K, Goater RJE, Fedosejev A, Bhai J, Glasner C, et al. Microreact: visualizing and sharing data for genomic epidemiology and phylogeography. Microbial genomics. 2016;2(11):e000093. Epub 2017/03/30. doi: 10.1099/mgen.0.000093 28348833; PubMed Central PMCID: PMC5320705.

28. Alikhan NF, Zhou Z, Sergeant MJ, Achtman M. A genomic overview of the population structure of Salmonella. PLoS genetics. 2018;14(4):e1007261. Epub 2018/04/06. doi: 10.1371/journal.pgen.1007261 29621240; PubMed Central PMCID: PMC5886390.

29. European committee on antimicrobial susceptibility testing E. Antimicrobial wild type distributions of microorganisms. 2018.

30. Performance Standards for Antimicrobial Susceptibility Testing, M100-28th ed. Wayne, PA: Clinical and Laboratory Standards Institute, (2018).

31. Heiman KE, Karlsson M, Grass J, Howie B, Kirkcaldy RD, Mahon B, et al. Notes from the field: Shigella with decreased susceptibility to azithromycin among men who have sex with men—United States, 2002–2013. MMWR Morbidity and mortality weekly report. 2014;63(6):132–3. Epub 2014/02/14. 24522098; PubMed Central PMCID: PMC4584870.

32. Bowen A, Grass J, Bicknese A, Campbell D, Hurd J, Kirkcaldy RD. Elevated Risk for Antimicrobial Drug-Resistant Shigella Infection among Men Who Have Sex with Men, United States, 2011–2015. Emerging infectious diseases. 2016;22(9):1613–6. Epub 2016/08/18. doi: 10.3201/eid2209.160624 27533624; PubMed Central PMCID: PMC4994375.

33. England PH. Laboratory surveillance of non-travel associated Shigella spp. infections in adults males, England: 2004 to 2017. Public Health England, 2017 Contract No.: 42.

34. Adamker G, Holzer T, Karakis I, Amitay M, Anis E, Singer SR, et al. Prediction of Shigellosis outcomes in Israel using machine learning classifiers. Epidemiology and infection. 2018;146(11):1445–51. Epub 2018/06/09. doi: 10.1017/S0950268818001498 29880081.

35. A.V. E. National Reference Center for Shigella. Government Central Laboratories, Ministry of Health, Israel Annual Report/Available from: https://wwwhealthgovil/PublicationsFiles/LAB_JER2016pdf 2016.

36. Barkai G, Greenberg D, Givon-Lavi N, Dreifuss E, Vardy D, Dagan R. Community prescribing and resistant Streptococcus pneumoniae. Emerging infectious diseases. 2005;11(6):829–37. Epub 2005/06/21. doi: 10.3201/eid1106.050198 15963276; PubMed Central PMCID: PMC3367585.


Článek vyšel v časopise

PLOS One


2019 Číslo 10