N-acetyl cysteine restores the fertility of vitrified–warmed mouse oocytes derived through ultrasuperovulation

Autoři: Ayumi Mukunoki aff001;  Toru Takeo aff001;  Naomi Nakagata aff001
Působiště autorů: Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan aff001
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224087


Oocyte cryopreservation is useful for preserving fertility and storing genetic resources. However, the small number of oocytes acquired using conventional treatment to induce superovulation and the reduction of fertility due to cryopreservation represent significant problems. Herein, we vitrified the oocytes derived through high-yield superovulation using inhibin antiserum and equine chorionic gonadotropin (IAS + eCG: IASe) and examined the yield of cryopreserved oocytes and survival rates relative to those of vitrified–warmed mouse oocytes derived through conventional superovulation using equine chorionic gonadotropin (eCG). Furthermore, we investigated the effects of N-acetyl cysteine on the fertility and developmental potential of vitrified–warmed oocytes derived using IASe. Compared with eCG, IASe increased the yield of cryopreserved oocytes and achieved equivalent survival rates. N-acetyl cysteine (0.5 mM) increased the fertilization rate of vitrified–warmed oocytes derived using IASe. Vitrification decreased thiol levels in the zona pellucida (ZP), while warming followed by N-acetyl cysteine treatment increased free thiol levels in ZP. Moreover, N-acetyl cysteine treatment recovered zona hardening by cleaving disulfide bonds and promoting the expansion of ZP. Two-cell embryos derived via in vitro fertilization using N-acetyl cysteine developed into normal pups through embryo transfer. Therefore, we developed an efficient technique for the production of cryopreserved oocytes using IASe through superovulation and found that N-acetyl cysteine improves the fertility of vitrified–warmed oocytes by cleaving the disulfide bonds and promoting the expansion of ZP.

Klíčová slova:

Cryopreservation – Cysteine – Electrocardiography – Embryos – Fertilization – Oocytes – Sperm – Thiols


1. Chang CC, Nel-Themaat L, Nagy ZP. Cryopreservation of oocytes in experimental models. Reproductive biomedicine online. 2011;23(3):307–13. doi: 10.1016/j.rbmo.2011.01.007 21550306.

2. Nakagata N, Takeo T, Fukumoto K, Kondo T, Haruguchi Y, Takeshita Y, et al. Applications of cryopreserved unfertilized mouse oocytes for in vitro fertilization. Cryobiology. 2013;67(2):188–92. doi: 10.1016/j.cryobiol.2013.06.011 23846105.

3. Kohaya N, Fujiwara K, Ito J, Kashiwazaki N. Generation of live offspring from vitrified mouse oocytes of C57BL/6J strain. PloS one. 2013;8(3):e58063. doi: 10.1371/journal.pone.0058063 23516430; PubMed Central PMCID: PMC3596345.

4. Carroll J, Wood MJ, Whittingham DG. Normal fertilization and development of frozen-thawed mouse oocytes: protective action of certain macromolecules. Biology of reproduction. 1993;48(3):606–12. doi: 10.1095/biolreprod48.3.606 8452937.

5. Whittingham DG. Fertilization in vitro and development to term of unfertilized mouse oocytes previously stored at—196 degrees C. Journal of reproduction and fertility. 1977;49(1):89–94. Epub 1977/01/01. doi: 10.1530/jrf.0.0490089 833794.

6. Parkening TA, Tsunoda Y, Chang MC. Effects of various low temperatures, cryoprotective agents and cooling rates on the survival, fertilizability and development of frozen-thawed mouse eggs. The Journal of experimental zoology. 1976;197(3):369–74. doi: 10.1002/jez.1401970310 965915.

7. Nakagata N, Sztein J, Takeo T. The CARD Method for Simple Vitrification of Mouse Oocytes: Advantages and Applications. Methods in molecular biology. 2019;1874:229–42. doi: 10.1007/978-1-4939-8831-0_13 30353517.

8. Nakao K, Nakagata N, Katsuki M. Simple and efficient vitrification procedure for cryopreservation of mouse embryos. Experimental animals. 1997;46(3):231–4. doi: 10.1538/expanim.46.231 9250485.

9. Nakagata N. High survival rate of unfertilized mouse oocytes after vitrification. Journal of reproduction and fertility. 1989;87(2):479–83. doi: 10.1530/jrf.0.0870479 2600904.

10. Takeo T, Nakagata N. Superovulation using the combined administration of inhibin antiserum and equine chorionic gonadotropin increases the number of ovulated oocytes in C57BL/6 female mice. PloS one. 2015;10(5):e0128330. doi: 10.1371/journal.pone.0128330 26024317; PubMed Central PMCID: PMC4449130.

11. Takeo T, Nakagata N. Reduced glutathione enhances fertility of frozen/thawed C57BL/6 mouse sperm after exposure to methyl-beta-cyclodextrin. Biology of reproduction. 2011;85(5):1066–72. Epub 2011/07/23. doi: 10.1095/biolreprod.111.092536 21778138.

12. Takeo T, Tsutsumi A, Omaru T, Fukumoto K, Haruguchi Y, Kondo T, et al. Establishment of a transport system for mouse epididymal sperm at refrigerated temperatures. Cryobiology. 2012;65(3):163–8. doi: 10.1016/j.cryobiol.2012.06.002 22722060.

13. Takeo T, Horikoshi Y, Nakao S, Sakoh K, Ishizuka Y, Tsutsumi A, et al. Cysteine analogs with a free thiol group promote fertilization by reducing disulfide bonds in the zona pellucida of mice. Biology of reproduction. 2015;92(4):90. Epub 2015/02/27. doi: 10.1095/biolreprod.114.125443 25715791.

14. Kishi H, Okada T, Otsuka M, Watanabe G, Taya K, Sasamoto S. Induction of superovulation by immunoneutralization of endogenous inhibin through the increase in the secretion of follicle-stimulating hormone in the cyclic golden hamster. J Endocrinol. 1996;151(1):65–75. Epub 1996/10/01. doi: 10.1677/joe.0.1510065 8943770.

15. Kito S, Ohta Y. In vitro fertilization in inbred BALB/c mice II: effects of lactate, osmolarity and calcium on in vitro capacitation. Zygote. 2008;16(3):259–70. doi: 10.1017/S0967199408004619 18578945.

16. Quinn P, Kerin JF, Warnes GM. Improved pregnancy rate in human in vitro fertilization with the use of a medium based on the composition of human tubal fluid. Fertil Steril. 1985;44(4):493–8. Epub 1985/10/01. doi: 10.1016/s0015-0282(16)48918-1 3902512.

17. Takeo T, Nakagata N. Combination medium of cryoprotective agents containing L-glutamine and methyl-{beta}-cyclodextrin in a preincubation medium yields a high fertilization rate for cryopreserved C57BL/6J mouse sperm. Laboratory animals. 2010;44(2):132–7. Epub 2010/04/02. doi: 10.1258/la.2009.009074 20357317.

18. Toyoda Y. Studies on fertilization of mouse eggs in vitro. I. In vitro fertilization of eggs by fresh epididymal sperm. Jpn J Anim Reprod. 1971;16:147–51.

19. Ho Y, Wigglesworth K, Eppig JJ, Schultz RM. Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression. Mol Reprod Dev. 1995;41(2):232–8. Epub 1995/06/01. doi: 10.1002/mrd.1080410214 7654376.

20. Nakagata N. [Embryo transfer through the wall of the fallopian tube in mice]. Jikken dobutsu Experimental animals. 1992;41(3):387–8. 1505632.

21. Moussa M, Shu J, Zhang X, Zeng F. Cryopreservation of mammalian oocytes and embryos: current problems and future perspectives. Science China Life sciences. 2014;57(9):903–14. doi: 10.1007/s11427-014-4689-z 25104318.

22. Leibo SP, Sztein JM. Cryopreservation of mammalian embryos: Derivation of a method. Cryobiology. 2019;86:1–9. doi: 10.1016/j.cryobiol.2019.01.007 30677413.

23. Takeo T, Nakagata N. Immunotherapy using inhibin antiserum enhanced the efficacy of equine chorionic gonadotropin on superovulation in major inbred and outbred mice strains. Theriogenology. 2016;86(5):1341–6. doi: 10.1016/j.theriogenology.2016.04.076 27242176.

24. Matson PL, Graefling J, Junk SM, Yovich JL, Edirisinghe WR. Cryopreservation of oocytes and embryos: use of a mouse model to investigate effects upon zona hardness and formulate treatment strategies in an in-vitro fertilization programme. Hum Reprod. 1997;12(7):1550–3. Epub 1997/07/01. doi: 10.1093/humrep/12.7.1550 9262294.

25. Carroll J, Depypere H, Matthews CD. Freeze-thaw-induced changes of the zona pellucida explains decreased rates of fertilization in frozen-thawed mouse oocytes. J Reprod Fertil. 1990;90(2):547–53. Epub 1990/11/01. doi: 10.1530/jrf.0.0900547 2250252.

26. Ishizuka Y, Takeo T, Nakao S, Yoshimoto H, Hirose Y, Sakai Y, et al. Prolonged exposure to hyaluronidase decreases the fertilization and development rates of fresh and cryopreserved mouse oocytes. J Reprod Dev. 2014;60(6):454–9. Epub 2014/09/17. doi: 10.1262/jrd.2014-045 25225080; PubMed Central PMCID: PMC4284320.

27. Larman MG, Sheehan CB, Gardner DK. Calcium-free vitrification reduces cryoprotectant-induced zona pellucida hardening and increases fertilization rates in mouse oocytes. Reproduction. 2006;131(1):53–61. Epub 2006/01/03. doi: 10.1530/rep.1.00878 16388009.

28. Iwamoto K, Ikeda K, Yonezawa N, Noguchi S, Kudo K, Hamano S, et al. Disulfide formation in bovine zona pellucida glycoproteins during fertilization: evidence for the involvement of cystine cross-linkages in hardening of the zona pellucida. J Reprod Fertil. 1999;117(2):395–402. Epub 2000/02/26. doi: 10.1530/jrf.0.1170395 10690208.

29. Vincent C, Pickering SJ, Johnson MH. The hardening effect of dimethylsulphoxide on the mouse zona pellucida requires the presence of an oocyte and is associated with a reduction in the number of cortical granules present. J Reprod Fertil. 1990;89(1):253–9. Epub 1990/05/01. doi: 10.1530/jrf.0.0890253 2374118.

30. Pickering SJ, Braude PR, Johnson MH. Cryoprotection of human oocytes: inappropriate exposure to DMSO reduces fertilization rates. Hum Reprod. 1991;6(1):142–3. Epub 1991/01/01. doi: 10.1093/oxfordjournals.humrep.a137248 1874947.

31. Matilla E, Martin-Cano FE, Gonzalez-Fernandez L, Sanchez-Margallo FM, Alvarez IS, Macias-Garcia B. N-acetylcysteine addition after vitrification improves oocyte mitochondrial polarization status and the quality of embryos derived from vitrified murine oocytes. BMC veterinary research. 2019;15(1):31. doi: 10.1186/s12917-018-1743-2 30654800; PubMed Central PMCID: PMC6337864.

32. Yue SL, Zhang YT, Wang SW, Sun M, Xing YC, Wen J, et al. Effect of Nac on Mouse Gv Oocyte Survival and Subsequent Embryonic Development Following Vitrfication. Cryo letters. 2016;37(4):295–302. 27925012.

33. Wang Y, Zhang M, Chen ZJ, Du Y. Resveratrol promotes the embryonic development of vitrified mouse oocytes after in vitro fertilization. In vitro cellular & developmental biology Animal. 2018;54(6):430–8. doi: 10.1007/s11626-018-0262-6 29845451.

34. Bakhtari A, Rahmani HR, Bonakdar E, Jafarpour F, Asgari V, Hosseini SM, et al. The interfering effects of superovulation and vitrification upon some important epigenetic biomarkers in mouse blastocyst. Cryobiology. 2014;69(3):419–27. Epub 2014/10/14. doi: 10.1016/j.cryobiol.2014.09.379 25307438.

35. Eppig JT, Strivens M. Finding a mouse: the International Mouse Strain Resource (IMSR). Trends Genet. 1999;15(2):81–2. Epub 1999/03/31. doi: 10.1016/s0168-9525(98)01665-5 10098412.

36. Davisson M. FIMRe: Federation of International Mouse Resources: global networking of resource centers. Mamm Genome. 2006;17(5):363–4. Epub 2006/05/12. doi: 10.1007/s00335-006-0001-2 16688526.

37. Nakagata N. Cryopreservation of mouse spermatozoa. Mammalian genome: official journal of the International Mammalian Genome Society. 2000;11(7):572–6. doi: 10.1007/s003350010109 10886025.

38. Guan M, Marschall S, Raspa M, Pickard AR, Fray MD. Overview of new developments in and the future of cryopreservation in the laboratory mouse. Mamm Genome. 2012;23(9–10):572–9. Epub 2012/09/01. doi: 10.1007/s00335-012-9423-1 22936001.

Článek vyšel v časopise


2019 Číslo 10