No evidence of associations between ADHD and event-related brain potentials from a continuous performance task in a population-based sample of adolescent twins

Autoři: Alex Lau-Zhu aff001;  Charlotte Tye aff001;  Frühling Rijsdijk aff001;  Grainne McLoughlin aff001
Působiště autorů: Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, England, United Kingdom aff001;  Centre for Psychiatry, Brain Sciences Division, Imperial College London, London, England, United Kingdom aff002;  Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, England, United Kingdom aff003
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223460


We investigated key event-related brain potential markers (ERPs) derived from a flanked continuous performance task (CPT) and whether these would show phenotypic associations with ADHD (attention-deficit/hyperactivity disorder) in a population-based sample. We further explored whether there was preliminary evidence that such ERPs could also index genetic risk for ADHD (depending on finding phenotypic associations). Sixty-seven male-only twin pairs (N = 134; aged 12–15) from a subsample of the Twins’ Early Development Study, concordant and discordant for ADHD symptoms, performed the flanked CPT (or CPT-OX) while electroencephalography (EEG) was recorded. ERPs were obtained for cue (P3, CNV or contingency negative variation), go (P3, N2) and nogo trials (P3, N2). We found no phenotypic associations between CPT-derived ERPs and ADHD—the sizes of the estimated phenotypic correlations were nonsignificant and very small (r’s = -.11 to .04). Twin-model fitting analyses using structural equation modelling provided preliminary evidence that some of the ERPs were heritable (with the most robust effect for go-P3 latency), but there was limited evidence of any genetic associations between ERPs and ADHD, although with the caveat that our sample was small and hence had limited power. Overall, unlike in previous research, there was no evidence of phenotypic (nor preliminary evidence for genetic) associations between ADHD and CPT-derived ERPs in this study. Hence, it may be currently premature for genetic analyses of ADHD to be guided by CPT-derived ERP parameters (unlike alternative cognitive-neurophysiological approaches which may be more promising). Further research with better-powered, population-based, genetically-informative and cross-disorder samples are required, which could be facilitated by emerging mobile EEG technologies.

Klíčová slova:

ADHD – Electroencephalography – Event-related potentials – Gene identification and analysis – Heredity – Phenotypes – Continuous performance tests – Twins


1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorder. 5th ed. Arlington, VA: American Psychiatric Association; 2013.

2. Rapee RM, Bőgels SM, van der Sluis CM, Craske MG, Ollendick T. Annual Research Review: Conceptualising functional impairment in children and adolescents. J Child Psychol Psychiatry. 2012;53: 454–468. doi: 10.1111/j.1469-7610.2011.02479.x 22067073

3. Biederman J, Petty CR, Evans M, Small J, Faraone SV. How persistent is ADHD? A controlled 10-year follow-up study of boys with ADHD. Psychiatry Res. 2010;177: 299–304. doi: 10.1016/j.psychres.2009.12.010 20452063

4. Faraone S V., Perlis RH, Doyle AE, Smoller JW, Goralnick JJ, Holmgren MA, et al. Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005;57: 1313–1323. doi: 10.1016/j.biopsych.2004.11.024 15950004

5. Rommelse NN, Altink ME, Martin NC, Buschgens CJ, Faraone SV, Buitelaar JK, et al. Relationship between endophenotype and phenotype in ADHD. Behav Brain Funct. 2008;4: 4. doi: 10.1186/1744-9081-4-4 18234079

6. del Campo N, Müller U, Sahakian BJ. Neural and behavioral endophenotypes in ADHD. Curr Top Behav Neurosci. 2012;11: 65–91. doi: 10.1007/7854_2012_200 22477088

7. Rommelse NN, Geurts HM, Franke B, Buitelaar JK, Hartman CA. A review on cognitive and brain endophenotypes that may be common in autism spectrum disorder and attention-deficit/hyperactivity disorder and facilitate the search for pleiotropic genes. Neuroscience and Biobehavioral Reviews. 2011. pp. 1363–1396. doi: 10.1016/j.neubiorev.2011.02.015 21382410

8. Lau-Zhu A, Fritz A, McLoughlin G. Overlaps and distinctions between attention-deficit/hyperactivity disorder and autism spectrum disorder in young adulthood: a systematic review and guiding framework for EEG-imaging research. Neurosci Biobehav Rev. 2019;96: 93–115. doi: 10.1016/j.neubiorev.2018.10.009 30367918

9. Coghill D, Sonuga-Barke EJS. Annual Research Review: Categories versus dimensions in the classification and conceptualisation of child and adolescent mental disorders—Implications of recent empirical study. J Child Psychol Psychiatry. 2012;53: 469–489. doi: 10.1111/j.1469-7610.2011.02511.x 22288576

10. Bush G. Neuroimaging of attention deficit hyperactivity disorder: can new imaging findings be integrated in clinical practice? Child Adolesc Psychiatr Clin N Am. 2008;17: 385–404. doi: 10.1016/j.chc.2007.11.002 18295152

11. Cortese S, Kelly C, Chabernaud C, Proal E, Di Martino A, Milham MP, et al. Toward systems neuroscience of ADHD: a meta-analysis of 55 fMRI studies. Am J Psychiatry. 2012;169: 1038–55. doi: 10.1176/appi.ajp.2012.11101521 22983386

12. Huang-Pollock CL, Karalunas SL, Tam H, Moore AN. Evaluating vigilance deficits in ADHD: a meta-analysis of CPT performance. J Abnorm Psychol. 2012;121: 360–71. doi: 10.1037/a0027205 22428793

13. Riccio CA, Reynolds CR, Lowe P, Moore JJ. The continuous performance test: a window on the neural substrates for attention? Arch Clin Neuropsychol. 2002;17: 235–272. doi: 10.1016/S0887-6177(01)00111-1 14589726

14. Tye C, Asherson P, Ashwood KL, Azadia B, Bolton P, McLoughlin G. Attention and inhibition in children with ASD, ADHD and co-morbid ASD+ADHD: an event-related potential study. Psychol Med. 2014;44: 1101–1116. doi: 10.1017/S0033291713001049 23673307

15. Tye C, Rijsdijk F, Greven CU, Kuntsi J, Asherson P, McLoughlin G. Shared genetic influences on ADHD symptoms and very low-frequency EEG activity: a twin study. J Child Psychol Psychiatry. 2012;53: 706–15. doi: 10.1111/j.1469-7610.2011.02501.x 22118296

16. McLoughlin G, Albrecht B, Banaschewski T, Rothenberger A, Brandeis D, Asherson P, et al. Electrophysiological evidence for abnormal preparatory states and inhibitory processing in adult ADHD. Behav Brain Funct. 2010;6: 1–12.

17. McLoughlin G, Asherson P, Albrecht B, Banaschewski T, Rothenberger A, Brandeis D, et al. Cognitive-electrophysiological indices of attentional and inhibitory processing in adults with ADHD: familial effects. Behav Brain Funct. 2011;7: 26. doi: 10.1186/1744-9081-7-26 21752266

18. Hall CL, Valentine AZ, Groom MJ, Walker GM, Sayal K, Daley D, et al. The clinical utility of the continuous performance test and objective measures of activity for diagnosing and monitoring ADHD in children: a systematic review. Eur Child Adolesc Psychiatry. 2016;25: 677–699. doi: 10.1007/s00787-015-0798-x 26620873

19. Baggio S, Hasler R, Giacomini V, El-Masri H, Weibel S, Perroud N, et al. Does the Continuous Performance Test Predict ADHD Symptoms Severity and ADHD Presentation in Adults? J Atten Disord. 2019; 108705471882206. doi: 10.1177/1087054718822060 30654686

20. Barkley RA. Neuropsychological Testing is Not Useful in the Diagnosis of ADHD: Stop It (or Prove It)! ADHD Rep. 2019;27: 1–8. doi: 10.1521/adhd.2019.27.2.1

21. Kofler MJ, Rapport MD, Sarver DE, Raiker JS, Orban SA, Friedman LM, et al. Reaction time variability in ADHD: A meta-analytic review of 319 studies. Clin Psychol Rev. 2013;33: 795–811. doi: 10.1016/j.cpr.2013.06.001 23872284

22. Lau-Zhu A, Lau MPH, McLoughlin G. Mobile EEG in research on neurodevelopmental disorders: opportunities and challenges. Dev Cogn Neurosci. 2019;36: 100635. doi: 10.1016/j.dcn.2019.100635 30877927

23. McLoughlin G, Makeig S, Tsuang MT. In search of biomarkers in psychiatry: EEG-based measures of brain function. Am J Med Genet Part B Neuropsychiatr Genet. 2014;165: 111–121.

24. Luck SJ. An Introduction to the Event-Related Potential Technique. 2nd ed. London, UK: MIT Press; 2014.

25. Overtoom CC, Verbaten MN, Kemner C, Kenemans JL, van Engeland H, Buitelaar JK, et al. Associations between event-related potentials and measures of attention and inhibition in the continuous performance task in children with ADHD and normal controls. J Am Acad Child Adolesc Psychiatry. 1998;37: 977–85. 9735617

26. Doehnert M, Brandeis D, Schneider G, Drechsler R, Steinhausen H-C. A neurophysiological marker of impaired preparation in an 11-year follow-up study of attention-deficit/hyperactivity disorder (ADHD). J Child Psychol Psychiatry. 2013;54: 260–270. doi: 10.1111/j.1469-7610.2012.02572.x 22788246

27. Rommel A-SS, James S-NN, McLoughlin GG, Brandeis D, Banaschewski T, Asherson P, et al. Association of preterm birth with attention-deficit/hyperactivity disorder-like and wider-ranging neurophysiological impairments of attention and inhibition. J Am Acad Child Adolesc Psychiatry. 2017;56: 40–50. doi: 10.1016/j.jaac.2016.10.006 27993227

28. Albrecht B, Brandeis D, Uebel H, Valko L, Heinrich H, Drechsler R, et al. Familiality of neural preparation and response control in childhood attention deficit-hyperactivity disorder. Psychol Med. 2013;43: 1997–2011. doi: 10.1017/S003329171200270X 23200032

29. Dhar M, Been PH, Minderaa RB, Althaus M. Information processing differences and similarities in adults with dyslexia and adults with attention deficit hyperactivity disorder during a continuous performance test: a study of cortical potentials. Neuropsychologia. 2010;48: 3045–3056. doi: 10.1016/j.neuropsychologia.2010.06.014 20600194

30. Michelini G, Kitsune GL, Hosang GM, Asherson P, McLoughlin G, Kuntsi J. Disorder-specific and shared neurophysiological impairments of attention and inhibition in women with attention-deficit/hyperactivity disorder and women with bipolar disorder. Psychol Med. 2016;46: 493–504. doi: 10.1017/S0033291715001877 26550924

31. Lawrence CA, Barry RJ, Clarke AR, Johnstone SJ, McCarthy R, Selikowitz M, et al. Methylphenidate effects in attention deficit/hyperactivity disorder: electrodermal and ERP measures during a continuous performance task. Psychopharmacology (Berl). 2005;183: 81–91. doi: 10.1007/s00213-005-0144-y 16160877

32. Banaschewski T, Brandeis D, Heinrich H, Albrecht B, Brunner E, Rothenberger A. Questioning inhibitory control as the specific deficit of ADHD—evidence from brain electrical activity. J Neural Transm. 2004;111: 841–864. doi: 10.1007/s00702-003-0040-8 15206002

33. Tye C, Bedford R, Asherson P, Ashwood KL, Azadi B, Bolton P, et al. Callous-unemotional traits moderate executive function in children with ASD and ADHD: A pilot event-related potential study. Dev Cogn Neurosci. 2017;26: 84–90. doi: 10.1016/j.dcn.2017.06.002 28654838

34. Doehnert M, Brandeis D, Imhof K, Drechsler R, Steinhausen H-C. Mapping attention-deficit/hyperactivity disorder from childhood to adolescence—no neurophysiologic evidence for a developmental lag of attention but some for inhibition. Biol Psychiatry. 2010;67: 608–616. doi: 10.1016/j.biopsych.2009.07.038 19811774

35. Cheung CHM, Rijsdijk F, McLoughlin GG, Brandeis D, Banaschewsk T, Asherson P, et al. Cognitive and neurophysiological markers of ADHD persistence and remission. Br J Psychiatry. 2016;208: 548–555. doi: 10.1192/bjp.bp.114.145185 26250744

36. Skirrow C. Investigating Emotional Lability in Adults with Attention Deficit Hyperactivity Disorder [Unpublished Doctoral Dissertation]. King’s College London. 2013.

37. Banaschewski T, Brandeis D, Heinrich H, Albrecht B, Brunner E, Rothenberger A. Association of ADHD and conduct disorder—brain electrical evidence for the existence of a distinct subtype. J Child Psychol Psychiatry. 2003;44: 356–376. doi: 10.1111/1469-7610.00127 12635966

38. Gilbody SM, Song F. Publication bias and the integrity of psychiatry research. Psychol Med. 2000;30: 253–8. doi: 10.1017/s0033291700001732 10824646

39. Deeks JJ, Glanville J, Sheldon T. Undertaking systemic reviews of research on effectiveness: CRD’s guidance for carrying out or commissioning reviews. CRD Report 4. 2001. ISBN: 1900640201

40. Doyle AE, Faraone S V., Seidman LJ, Willcutt EG, Nigg JT, Waldman ID, et al. Are endophenotypes based on measures of executive functions useful for molecular genetic studies of ADHD? J Child Psychol Psychiatry. 2005;46: 774–803. doi: 10.1111/j.1469-7610.2005.01476.x 15972070

41. Wiersema R, Van Der Meere J, Roeyers H, Van Coster R, Baeyens D. Event rate and event-related potentials in ADHD. J Child Psychol Psychiatry. 2006;47: 560–567. doi: 10.1111/j.1469-7610.2005.01592.x 16712632

42. Iacono WG, Carlson SR, Malone SM, McGue M. P3 event-related potential amplitude and the risk for disinhibitory disorders in adolescent boys. Arch Gen Psychiatry. 2002;59: 750. doi: 10.1001/archpsyc.59.8.750 12150652

43. Michelini G, Cheung CHM, Kitsune V, Brandeis D, Banaschewski T, McLoughlin G, et al. The etiological structure of cognitive-neurophysiological impairments in ADHD in adolescence and young adulthood. J Atten Disord. 2018;In press. doi: 10.1177/1087054718771191 29720024

44. Plomin R, DeFries JC, Knopik VS, Neiderhiser JM. Behavioral Genetics: A Primer. 6th ed. New York: Worth Publishers; 2013.

45. Kendler KS, Neale MC. Endophenotype: a conceptual analysis. Mol Psychiatry. 2010;15: 789–797. doi: 10.1038/mp.2010.8 20142819

46. Walters JTR, Owen MJ. Endophenotypes in psychiatric genetics. Mol Psychiatry. 2007;12: 886–890. doi: 10.1038/ 17895920

47. Anokhin AP, Heath AC, Myers E. Genetics, prefrontal cortex, and cognitive control: a twin study of event-related brain potentials in a response inhibition task. Neurosci Lett. 2004;368: 314–318. doi: 10.1016/j.neulet.2004.07.036 15364418

48. Carlson SR, Iacono WG. Heritability of P300 amplitude development from adolescence to adulthood. Psychophysiology. 2006;43: 470–480. doi: 10.1111/j.1469-8986.2006.00450.x 16965609

49. Anokhin AP, Golosheykin S, Grant JD, Heath AC. Heritability of brain activity related to response inhibition: a longitudinal genetic study in adolescent twins. Int J Psychophysiol. 2017;115: 112–124. doi: 10.1016/j.ijpsycho.2017.03.002 28300615

50. Smit DJA, Posthuma D, Boomsma DI, De Geus EJC. Phenotypic and genetic correlations between evoked EEG/ERP measures during the response anticipation period of a delayed response task. Psychophysiology. 2009;46: 344–356. doi: 10.1111/j.1469-8986.2008.00777.x 19170951

51. Gottesman II, Gould TD. The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry. 2003;160: 636–645. doi: 10.1176/appi.ajp.160.4.636 12668349

52. Tye C, Rijsdijk F, McLoughlin G. Genetic overlap between ADHD symptoms and EEG theta power. Brain Cogn. 2014;87: 168–172. doi: 10.1016/j.bandc.2014.03.010 24752036

53. McLoughlin G, Palmer JA, Rijsdijk F, Makeig S. Genetic overlap between evoked frontocentral theta-band phase variability, reaction time variability, and attention-deficit/hyperactivity disorder symptoms in a twin study. Biol Psychiatry. 2014;75: 238–247. doi: 10.1016/j.biopsych.2013.07.020 24001472

54. Pinto R, Rijsdijk F, Ouellet-Morin I, Asherson P, McLoughlin G, Kuntsi J. The aetiological association between the dynamics of cortisol productivity and ADHD. J Neural Transm. 2016;123: 991–1000. doi: 10.1007/s00702-016-1534-5 27106905

55. Haworth CMA, Davis OSP, Plomin R. Twins Early Development Study (TEDS): a genetically sensitive investigation of cognitive and behavioral development from childhood to young adulthood. Twin Res Hum Genet. 2013;16: 117–125. doi: 10.1017/thg.2012.91 23110994

56. Conners CK, Sitarenios G, Parker JD, Epstein JN. The revised Conners’ Parent Rating Scale (CPRS-R): factor structure, reliability, and criterion validity. J Abnorm Child Psychol. 1998;26: 257–68. doi: 10.1023/a:1022602400621 9700518

57. Muthén L. K., & Muthén BO. Mplus User’s Guide. 6th ed. Los Angeles, CA: Muthen & Muthen; 2011.

58. Conners CK, Sitarenios G, Parker JD, Epstein JN. Revision and restandardization of the Conners Teacher Rating Scale (CTRS-R): factor structure, reliability, and criterion validity. J Abnorm Child Psychol. 1998;26: 279–91. doi: 10.1023/a:1022606501530 9700520

59. Wechsler D. Wechsler intelligence Scale for Children—Third Edition UK (WISC-IIIUK) manual. London: The Psychological Corporation; 1992.

60. Raven JC, Court JH, Raven J. Manual for Raven’s Progressive Matrices and Vocabulary Scales. Oxford: Oxford University Press; 1996.

61. Jensen AR. The g Factor: The Science of Mental Ability. 1st ed. Westport, CT: Praeger; 1998.

62. Lopez-Calderon J, Luck SJ. ERPLAB: an open-source toolbox for the analysis of event-related potentials. Front Hum Neurosci. 2014;8: 213. doi: 10.3389/fnhum.2014.00213 24782741

63. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134: 9–21. doi: 10.1016/j.jneumeth.2003.10.009 15102499

64. The MathWorks Inc. MATLAB (R2016a). MathWorks Inc. 2016.

65. Palmer JA, Kreutz-Delgado K, Makeig S. Super-gaussian mixture source model for ICA. In: Rosca J, Erdogmus D, Principe JC, Haykin S, editors. Proceedings of the 6th International Symposium on Independent Component Analysis. Springer, Berlin, Heidelberg; 2006. pp. 854–861. 10.1007/11679363_106

66. Delorme A, Palmer J, Onton J, Oostenveld R, Makeig S. Independent EEG sources are dipolar. PLoS One. 2012;7: e30135. doi: 10.1371/journal.pone.0030135 22355308

67. Jung TP, Makeig S, Humphries C, Lee TW, McKeown MJ, Iragui V, et al. Removing electroencephalographic artifacts by blind source separation. Psychophysiology. 2000;37: 163–78. 10731767

68. Mognon A, Jovicich J, Bruzzone L, Buiatti M. ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features. Psychophysiology. 2011;48: 229–240. doi: 10.1111/j.1469-8986.2010.01061.x 20636297

69. StataCorp. Stata Statistical Software: Release 15. 2017. 2017.

70. Gönen M, Johnson WO, Lu Y, Westfall PH. The bayesian two-sample t-test. Am Stat. 2005;59: 252–257. doi: 10.1198/000313005X55233

71. IBM. IBM SPSS Statistics 25. Ibm. 2017.

72. Boker S, Neale M, Maes H, Wilde M, Spiegel M, Brick T, et al. OpenMx: An open source extended structural equation modeling framework. Psychometrika. 2011;76: 306–317. doi: 10.1007/s11336-010-9200-6 23258944

73. Neale MC. Mx: Statistical Modelling. Richmond: Department of Psychiatry, Medical College of Virginia; 1997.

74. Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA. The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry. 2007;164: 942–948. doi: 10.1176/ajp.2007.164.6.942 17541055

75. Neale MC, Kendler KS. Models of comorbidity for multifactorial disorders. Am J Hum Genet. 1995;57: 935–53. 7573055

76. Toulopoulou T, Picchioni M, Rijsdijk F, Hua-Hall M, Ettinger U, Sham P, et al. Substantial genetic overlap between neurocognition and schizophrenia. Arch Gen Psychiatry. 2007;64: 1348. doi: 10.1001/archpsyc.64.12.1348 18056542

77. Rijsdijk F V., van Haren NEM, Picchioni MM, McDonald C, Toulopoulou T, Pol HEH, et al. Brain MRI abnormalities in schizophrenia: same genes or same environment? Psychol Med. 2005;35: 1399. doi: 10.1017/S0033291705005167 16164764

78. Picchioni MM, Rijsdijk F, Toulopoulou T, Chaddock C, Cole JH, Ettinger U, et al. Familial and environmental influences on brain volumes in twins with schizophrenia. J Psychiatry Neurosci. 2017;42: 122–130. doi: 10.1503/jpn.140277 28245176

79. Hall M-H, Rijsdijk F, Picchioni M, Schulze K, Ettinger U, Toulopoulou T, et al. Substantial shared genetic influences on schizophrenia and event-related potentials. Am J Psychiatry. 2007;164: 804–812. doi: 10.1176/ajp.2007.164.5.804 17475740

80. Hall M-H, Spencer KM, Schulze K, McDonald C, Kalidindi S, Kravariti E, et al. The genetic and environmental influences of event-related gamma oscillations on bipolar disorder. Bipolar Disord. 2011;13: 260–71. doi: 10.1111/j.1399-5618.2011.00925.x 21676129

81. Hall M-H, Rijsdijk F, Kalidindi S, Schulze K, Kravariti E, Kane F, et al. Genetic overlap between bipolar illness and event-related potentials. Psychol Med. 2007;37: 667–678. doi: 10.1017/S003329170600972X 17224092

82. Rijsdijk F V., Viding E, De Brito S, Forgiarini M, Mechelli A, Jones AP, et al. Heritable variations in gray matter concentration as a potential endophenotype for psychopathic traits. Arch Gen Psychiatry. 2010;67: 406. doi: 10.1001/archgenpsychiatry.2010.20 20368516

83. Jeffreys H. Theory of probability. 3rd ed. Oxford, UK: Clarendon Press; 1998.

84. Dienes Z. Bayesian versus orthodox statistics: Which side are you on? Perspect Psychol Sci. 2011;6: 274–290. doi: 10.1177/1745691611406920 26168518

85. Neale MC, Cardon L. Methodology for Genetic Studies of Twins and Families. Doordrecht, The Neatherlands: Kluwer Academic Publishers; 1992.

86. Iacono WG, Vaidyanathan U, Vrieze SI, Malone SM. Knowns and unknowns for psychophysiological endophenotypes: integration and response to commentaries. Psychophysiology. 2014;51: 1339–1347. doi: 10.1111/psyp.12358 25387720

87. Hall MH, Schulze K, Bramon E, Murray RM, Sham P, Rijsdijk F. Genetic overlap between P300, P50, and duration mismatch negativity. Am J Med Genet Part B, Neuropsychiatr Genet. 2006;141B: 336–343.

88. Hall MH, Schulze K, Rijsdijk F, Picchioni M, Ettinger U, Bramon E, et al. Heritability and reliability of P300, P50 and duration mismatch negativity. Behav Genet. 2006;36: 845–857. doi: 10.1007/s10519-006-9091-6 16826459

89. Makeig S, Debener S, Onton J, Delorme A. Mining event-related brain dynamics. Trends Cogn Sci. 2004;8: 204–210. doi: 10.1016/j.tics.2004.03.008 15120678

90. Buzsáki G. Rhythms of the Brain. New York, USA: Oxford University Press; 2006. doi: 10.1093/acprof:oso/9780195301069.001.0001

91. Siegel M, Donner TH, Engel AK. Spectral fingerprints of large-scale neuronal interactions. Nat Rev Neurosci. 2012;13: 121–134. doi: 10.1038/nrn3137 22233726

92. Ahmadlou M, Adeli H. Wavelet-synchronization methodology: a new approach for EEG-based diagnosis of ADHD. Clin EEG Neurosci. 2010;41: 1–10. doi: 10.1177/155005941004100103 20307009

93. Womelsdorf T, Schoffelen J-M, Oostenveld R, Singer W, Desimone R, Engel AK, et al. Modulation of neuronal interactions through neuronal synchronization. Science (80-). 2007;316: 1609–1612. doi: 10.1126/science.1139597 17569862

94. Vinogradov S, Herman A. Psychiatric illnesses as oscillatory connectomopathies. Neuropsychopharmacology. 2016;41: 387–388. doi: 10.1038/npp.2015.308 26657965

95. Yener GG, Başar E. Brain oscillations as biomarkers in neuropsychiatric disorders: following an interactive panel discussion and synopsis. Suppl Clin Neurophysiol. 2013;62: 343–63. 24053048

96. Makeig S. Event-related brain dynamics—unifying brain electrophysiology. Trends Neurosci. 2002;25: 390.

97. Loo SK, Lenartowicz A, Makeig S. Research review: Use of EEG biomarkers in child psychiatry research—current state and future directions. J Child Psychol Psychiatry. 2015;57: 4–17. doi: 10.1111/jcpp.12435 26099166

98. Light GA, Makeig S. Electroencephalographic biomarkers of psychosis: present and future. Biol Psychiatry. 2015;77: 87–89. doi: 10.1016/j.biopsych.2014.11.002 25524305

99. McLoughlin G, Palmer J, Makeig S, Bigdely-Shamlo N, Banaschewski T, Laucht M, et al. EEG source imaging indices of cognitive control show associations with dopamine system genes. Brain Topogr. 2018;31: 392–406. doi: 10.1007/s10548-017-0601-z 29222686

100. McLoughlin G, Lau-Zhu A, Tye C, Shakeshaft N, Khalil A, Capp S, et al. Inter-method reliability and test-retest reliability of mobile EEG technologies for assessing resting states and cognitive processing. Prep.

Článek vyšel v časopise


2019 Číslo 10