Development and multi-cohort validation of a clinical score for predicting type 2 diabetes mellitus

Autoři: Vanessa Kraege aff001;  Peter Vollenweider aff001;  Gérard Waeber aff001;  Stephen J. Sharp aff002;  Maite Vallejo aff003;  Oscar Infante aff003;  Mohammad Reza Mirjalili aff004;  Fatemeh Ezoddini-Ardakani aff004;  Hassan Mozaffari-Khosravi aff004;  Mohammad Hasan Lotfi aff004;  Masoud Mirzaei aff004;  Marie Méan aff001;  Pedro Marques-Vidal aff001
Působiště autorů: Department of Medicine, Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland aff001;  MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, England, United Kingdom aff002;  Tlalpan 2020 Study, Department of Socio-Medical Research, National Institute of Cardiology, Ignacio Chávez, Mexico City, Mexico aff003;  Shahid Sadoughi University of Medical Sciences, Yazd, Iran aff004
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article


Background and aims

Many countries lack resources to identify patients at risk of developing Type 2 diabetes mellitus (diabetes). We aimed to develop and validate a diabetes risk score based on easily accessible clinical data.


Prospective study including 5277 participants (55.0% women, 51.8±10.5 years) free of diabetes at baseline. Comparison with two other published diabetes risk scores (Balkau and Kahn clinical, respectively 5 and 8 variables) and validation on three cohorts (Europe, Iran and Mexico) was performed.


After a mean follow-up of 10.9 years, 405 participants (7.7%) developed diabetes. Our score was based on age, gender, waist circumference, diabetes family history, hypertension and physical activity. The area under the curve (AUC) was 0.772 for our score, vs. 0.748 (p<0.001) and 0.774 (p = 0.668) for the other two. Using a 13-point threshold, sensitivity, specificity, positive and negative predictive values (95% CI) of our score were 60.5 (55.5–65.3), 77.1 (75.8–78.2), 18.0 (16.0–20.1) and 95.9 (95.2–96.5) percent, respectively. Our score performed equally well or better than the other two in the Iranian [AUC 0.542 vs. 0.564 (p = 0.476) and 0.513 (p = 0.300)] and Mexican [AUC 0.791 vs. 0.672 (p<0.001) and 0.778 (p = 0.575)] cohorts. In the European cohort, it performed similarly to the Balkau score but worse than the Kahn clinical [AUC 0.788 vs. 0.793 (p = 0.091) and 0.816 (p<0.001)]. Diagnostic capacity of our score was better than the Balkau score and comparable to the Kahn clinical one.


Our clinically-based score shows encouraging results compared to other scores and can be used in populations with differing diabetes prevalence.

Klíčová slova:

Cardiovascular diseases – Hypertension – Medical risk factors – Mexico – Physical activity


1. N. C. D. Risk Factor Collaboration. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet. 2016;387(10027):1513–30. doi: 10.1016/S0140-6736(16)00618-8 27061677

2. Geldsetzer P, Manne-Goehler J, Theilmann M, Davies JI, Awasthi A, Vollmer S, et al. Diabetes and hypertension in India: a nationally representative study of 1.3 million adults. JAMA Intern Med. 2018;178(3):363–72. doi: 10.1001/jamainternmed.2017.8094 29379964

3. Noble D, Mathur R, Dent T, Meads C, Greenhalgh T. Risk models and scores for type 2 diabetes: systematic review. Bmj. 2011;343:d7163. doi: 10.1136/bmj.d7163 22123912

4. Abbasi A, Peelen LM, Corpeleijn E, van der Schouw YT, Stolk RP, Spijkerman AM, et al. Prediction models for risk of developing type 2 diabetes: systematic literature search and independent external validation study. Bmj. 2012;345:e5900. doi: 10.1136/bmj.e5900 22990994

5. Schmid R, Vollenweider P, Bastardot F, Waeber G, Marques-Vidal P. Validation of 7 type 2 diabetes mellitus risk scores in a population-based cohort: CoLaus study. Arch Intern Med. 2012;172(2):188–9. doi: 10.1001/archinte.172.2.188 22271131

6. Firmann M, Mayor V, Vidal PM, Bochud M, Pecoud A, Hayoz D, et al. The CoLaus study: a population-based study to investigate the epidemiology and genetic determinants of cardiovascular risk factors and metabolic syndrome. BMC Cardiovasc Disord. 2008;8:6. doi: 10.1186/1471-2261-8-6 18366642

7. Balkau B, Lange C, Fezeu L, Tichet J, de Lauzon-Guillain B, Czernichow S, et al. Predicting diabetes: clinical, biological, and genetic approaches: data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR). Diabetes Care. 2008;31(10):2056–61. doi: 10.2337/dc08-0368 18689695

8. Kahn HS, Cheng YJ, Thompson TJ, Imperatore G, Gregg EW. Two risk-scoring systems for predicting incident diabetes mellitus in U.S. adults age 45 to 64 years. Ann Intern Med. 2009;150(11):741–51. doi: 10.7326/0003-4819-150-11-200906020-00002 19487709

9. Marti-Soler H, Hirotsu C, Marques-Vidal P, Vollenweider P, Waeber G, Preisig M, et al. The NoSAS score for screening of sleep-disordered breathing: a derivation and validation study. Lancet Respir Med. 2016;4(9):742–8. doi: 10.1016/S2213-2600(16)30075-3 27321086

10. Bingham S, Riboli E. Diet and cancer—the European Prospective Investigation into Cancer and Nutrition. Nat Rev Cancer. 2004;4(3):206–15. doi: 10.1038/nrc1298 14993902

11. InterAct C, Langenberg C, Sharp S, Forouhi NG, Franks PW, Schulze MB, et al. Design and cohort description of the InterAct Project: an examination of the interaction of genetic and lifestyle factors on the incidence of type 2 diabetes in the EPIC Study. Diabetologia. 2011;54(9):2272–82. doi: 10.1007/s00125-011-2182-9 21717116

12. Colin-Ramirez E, Rivera-Mancia S, Infante-Vazquez O, Cartas-Rosado R, Vargas-Barron J, Madero M, et al. Protocol for a prospective longitudinal study of risk factors for hypertension incidence in a Mexico City population: the Tlalpan 2020 cohort. BMJ Open. 2017;7(7):e016773. doi: 10.1136/bmjopen-2017-016773 28760800

13. Poustchi H, Eghtesad S, Kamangar F, Etemadi A, Keshtkar AA, Hekmatdoost A, et al. Prospective Epidemiological Research Studies in Iran (the PERSIAN Cohort Study): Rationale, Objectives, and Design. Am J Epidemiol. 2018;187(4):647–55. doi: 10.1093/aje/kwx314 29145581

14. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. Bmj. 2015;350:g7594. doi: 10.1136/bmj.g7594 25569120

15. Diabète Suisse. Test diabète Baden, Switzerland2017

16. Lindström J, Tuomilehto J. The diabetes risk score: a practical tool to predict type 2 diabetes risk. Diabetes Care. 2003;26(3):725–31. doi: 10.2337/diacare.26.3.725 12610029

17. Griffin SJ, Little PS, Hales CN, Kinmonth AL, Wareham NJ. Diabetes risk score: towards earlier detection of type 2 diabetes in general practice. Diabetes Metab Res Rev. 2000;16(3):164–71. 10867715

18. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–53. doi: 10.2337/diacare.27.5.1047 15111519

19. Stevens J, Katz EG, Huxley RR. Associations between gender, age and waist circumference. Eur J Clin Nutr. 2010;64(1):6–15. doi: 10.1038/ejcn.2009.101 19738633

20. Ford ES, Mokdad AH, Giles WH. Trends in waist circumference among U.S. adults. Obes Res. 2003;11(10):1223–31. doi: 10.1038/oby.2003.168 14569048

21. Kautzky-Willer A, Harreiter J, Pacini G. Sex and Gender Differences in Risk, Pathophysiology and Complications of Type 2 Diabetes Mellitus. Endocr Rev. 2016;37(3):278–316. doi: 10.1210/er.2015-1137 27159875

22. Meisinger C, Doring A, Thorand B, Heier M, Lowel H. Body fat distribution and risk of type 2 diabetes in the general population: are there differences between men and women? The MONICA/KORA Augsburg cohort study. Am J Clin Nutr. 2006;84(3):483–9. doi: 10.1093/ajcn/84.3.483 16960160

23. Borne Y, Nilsson PM, Melander O, Hedblad B, Engstrom G. Multiple anthropometric measures in relation to incidence of diabetes: a Swedish population-based cohort study. Eur J Public Health. 2015;25(6):1100–5. doi: 10.1093/eurpub/ckv044 25817208

24. Prakash K, Chandran DS, Khadgawat R, Jaryal AK, Deepak KK. Waist Circumference Rather than Body Mass Index is Better Indicator of Insulin Resistance in Type 2 Diabetes Mellitus in North Indian Population. Indian J Physiol Pharmacol. 2016;60(1):52–6. 29953194

25. Alvim Rde O, Mourao-Junior CA, de Oliveira CM, Krieger JE, Mill JG, Pereira AC. Body mass index, waist circumference, body adiposity index, and risk for type 2 diabetes in two populations in Brazil: general and Amerindian. PLoS One. 2014;9(6):e100223. doi: 10.1371/journal.pone.0100223 24937307

26. Izzo R, de Simone G, Chinali M, Iaccarino G, Trimarco V, Rozza F, et al. Insufficient control of blood pressure and incident diabetes. Diabetes Care. 2009;32(5):845–50. doi: 10.2337/dc08-1881 19223610

27. Kim MJ, Lim NK, Choi SJ, Park HY. Hypertension is an independent risk factor for type 2 diabetes: the Korean genome and epidemiology study. Hypertens Res. 2015;38(11):783–9. doi: 10.1038/hr.2015.72 26178151

28. Hayashi T, Tsumura K, Suematsu C, Endo G, Fujii S, Okada K. High normal blood pressure, hypertension, and the risk of type 2 diabetes in Japanese men. The Osaka Health Survey. Diabetes Care. 1999;22(10):1683–7. doi: 10.2337/diacare.22.10.1683 10526735

29. Collaboration NCDRF. Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19.1 million participants. Lancet. 2017;389(10064):37–55. doi: 10.1016/S0140-6736(16)31919-5 27863813

30. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39(33):3021–104. doi: 10.1093/eurheartj/ehy339 30165516

31. Kolb H, Martin S. Environmental/lifestyle factors in the pathogenesis and prevention of type 2 diabetes. BMC Med. 2017;15(1):131. doi: 10.1186/s12916-017-0901-x 28720102

32. Wareham NJ, Jakes RW, Rennie KL, Schuit J, Mitchell J, Hennings S, et al. Validity and repeatability of a simple index derived from the short physical activity questionnaire used in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Public Health Nutr. 2003;6(4):407–13. doi: 10.1079/PHN2002439 12795830

33. Ipaq.

34. Hemmingsen B, Gimenez-Perez G, Mauricio D, Roque IFM, Metzendorf MI, Richter B. Diet, physical activity or both for prevention or delay of type 2 diabetes mellitus and its associated complications in people at increased risk of developing type 2 diabetes mellitus. Cochrane Database Syst Rev. 2017;12:CD003054. doi: 10.1002/14651858.CD003054.pub4 29205264

35. Esteghamati A, Etemad K, Koohpayehzadeh J, Abbasi M, Meysamie A, Noshad S, et al. Trends in the prevalence of diabetes and impaired fasting glucose in association with obesity in Iran: 2005–2011. Diabetes Res Clin Pract. 2014;103(2):319–27. doi: 10.1016/j.diabres.2013.12.034 24447808

36. [NCD Risk Factor Collaboration].

37. Marques-Vidal P, Rodondi N, Bochud M, Chiolero A, Pecoud A, Hayoz D, et al. Predictive accuracy of original and recalibrated Framingham risk score in the Swiss population. Int J Cardiol. 2009;133(3):346–53. doi: 10.1016/j.ijcard.2008.01.004 18485502

38. American Diabetes A. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018. Diabetes Care. 2018;41(Suppl 1):S13–S27. doi: 10.2337/dc18-S002 29222373

39. McKeigue PM, Shah B, Marmot MG. Relation of central obesity and insulin resistance with high diabetes prevalence and cardiovascular risk in South Asians. Lancet. 1991;337(8738):382–6. doi: 10.1016/0140-6736(91)91164-p 1671422

40. Wijndaele K, Westgate K, Stephens SK, Blair SN, Bull FC, Chastin SF, et al. Utilization and Harmonization of Adult Accelerometry Data: Review and Expert Consensus. Med Sci Sports Exerc. 2015;47(10):2129–39. doi: 10.1249/MSS.0000000000000661 25785929

41. Dagenais GR, Gerstein HC, Zhang X, McQueen M, Lear S, Lopez-Jaramillo P, et al. Variations in Diabetes Prevalence in Low-, Middle-, and High-Income Countries: Results From the Prospective Urban and Rural Epidemiological Study. Diabetes Care. 2016;39(5):780–7. doi: 10.2337/dc15-2338 26965719

42. McNamara CL, Balaj M, Thomson KH, Eikemo TA, Solheim EF, Bambra C. The socioeconomic distribution of non-communicable diseases in Europe: findings from the European Social Survey (2014) special module on the social determinants of health. Eur J Public Health. 2017;27(suppl_1):22–6. doi: 10.1093/eurpub/ckw222 28355638

43. Gujral UP, Mohan V, Pradeepa R, Deepa M, Anjana RM, Narayan KM. Ethnic differences in the prevalence of diabetes in underweight and normal weight individuals: The CARRS and NHANES studies. Diabetes Res Clin Pract. 2018;146:34–40. doi: 10.1016/j.diabres.2018.09.011 30244052

44. Luo J, Hendryx M, Laddu D, Phillips LS, Chlebowski R, LeBlanc ES, et al. Racial and Ethnic Differences in Anthropometric Measures as Risk Factors for Diabetes. Diabetes Care. 2019;42(1):126–33. doi: 10.2337/dc18-1413 30352893

Článek vyšel v časopise


2019 Číslo 10
Nejčtenější tento týden