Phenotypic determinism and contingency in the evolution of hypothetical tree-like organisms


Autoři: Tomonobu Nonoyama aff001;  Satoshi Chiba aff001
Působiště autorů: Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai, Japan aff001;  Center for Northeast Asian Studies, Tohoku University, Kawauchi, Aoba-ku, Sendai, Japan aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0211671

Souhrn

Whether evolutionary history is mostly contingent or deterministic has been given much focus in the field of evolutionary biology. Studies addressing this issue have been conducted theoretically, based on models, and experimentally, based on microcosms. It has been argued that the shape of the adaptive landscape and mutation rate are major determinants of replicated phenotypic evolution. In the present study, to incorporate the effects of phenotypic plasticity, we constructed a model using tree-like organisms. In this model, the basic rules used to develop trees are genetically determined, but tree shape (described by the number and aspect ratio of the branches) is determined by both genetic components and plasticity. The results of the simulation show that the tree shapes become more deterministic under higher mutation rates. However, the tree shape became most contingent and diverse at the lower mutation rate. In this situation, the variances of the genetically determinant characters were low, but the variance of the tree shape is rather high, suggesting that phenotypic plasticity results in this contingency and diversity of tree shape. The present findings suggest that plasticity cannot be ignored as a factor that increases contingency and diversity of evolutionary outcomes.

Klíčová slova:

Aspect ratio – Evolutionary biology – Leaves – Organismal evolution – Phenotypes – Trees – Evolutionary developmental biology – Genetic determinism


Zdroje

1. Gould S. Wonderful life: the Burgess Shale and the nature of history. Trends in Ecology & Evolution. W. W. Norton and Company; 1990.

2. Vermeij GJ. Historical contingency and the purported uniqueness of evolutionary innovations. Proc Natl Acad Sci. 2006;103: 1804–1809. doi: 10.1073/pnas.0508724103 16443685

3. Morris S. Life’s solution: inevitable humans in a lonely universe. Cambridge University Press; 2003.

4. Powell R. Convergent evolution and the limits of natural selection. Eur J Philos Sci. Springer Netherlands; 2012;2: 355–373. doi: 10.1007/s13194-012-0047-9

5. Blount ZD, Borland CZ, Lenski RE. Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proc Natl Acad Sci. 2008;105: 7899–7906. doi: 10.1073/pnas.0803151105 18524956

6. Gould S. J. Lewontin R. C. Smith J. Maynard Holliday Robin. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc London Ser B Biol Sci. 1979;205: 581–598. doi: 10.1098/rspb.1979.0086 42062

7. Wright S. The roles of mutation, inbreeding, crossbreeding and selection in evolution, Proceedings of the Sixth International Congress of Genetics. Proc Sixth Int Congr Genet. 1932;1: 356–366.

8. Weinberger ED, Kauffman SA. The NK Model of rugged fitness landscapes and its application to maturation of the immune response. J Theor Biol. 1989;141: 211–245. Available: https://www.sciencedirect.com/science/article/pii/S0022519389800190 doi: 10.1016/s0022-5193(89)80019-0 2632988

9. Dawid A, Kiviet DJ, Kogenaru M, de Vos M, Tans SJ. Multiple peaks and reciprocal sign epistasis in an empirically determined genotype-phenotype landscape. Chaos An Interdiscip J Nonlinear Sci. 2010;20: 026105. doi: 10.1063/1.3453602 20590334

10. Lobkovsky AE, Wolf YI, Koonin E V. Predictability of Evolutionary Trajectories in Fitness Landscapes. Shakhnovich EI, editor. PLoS Comput Biol. 2011;7: e1002302. doi: 10.1371/journal.pcbi.1002302 22194675

11. Gavrilets S. Fitness landscapes and the origin of species. Princeton: Princeton Univ. Press; 2004.

12. Beldade P, Koops K, Brakefield PM. Developmental constraints versus flexibility in morphological evolution. Nature. 2002;416: 844–847. doi: 10.1038/416844a 11976682

13. Lobkovsky AE, Koonin E V. Replaying the Tape of Life: Quantification of the Predictability of Evolution. Front Genet. 2012;3. doi: 10.3389/fgene.2012.00246 23226153

14. Jin Y. A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput. Springer-Verlag; 2005;9: 3–12. doi: 10.1007/s00500-003-0328-5

15. Orgogozo V. Replaying the tape of life in the twenty-first century. Interface Focus. 2015;5: 20150057. doi: 10.1098/rsfs.2015.0057 26640652

16. Niklas KJ. Adaptive walks through fitness landscapes for early vascular land plants. Am J Bot. John Wiley & Sons, Ltd; 1997;84: 16–25. doi: 10.2307/2445878

17. Perttunen J, Sievänen R, Nikinmaa E. LIGNUM: a model combining the structure and the functioning of trees. Ecol Modell. Elsevier; 1998;108: 189–198. doi: 10.1016/S0304-3800(98)00028-3

18. Fourcaud T, Blaise F, Lac P, Castéra P, de Reffye P. Numerical modelling of shape regulation and growth stresses in trees. Trees. Springer-Verlag; 2003;17: 31–39. doi: 10.1007/s00468-002-0203-5

19. Nikinmaa E, Messier C, Sievanen R, Perttunen J, Lehtonen M. Shoot growth and crown development: effect of crown position in three-dimensional simulations. Tree Physiol. Oxford University Press; 2003;23: 129–136. doi: 10.1093/treephys/23.2.129 12533307

20. Honda H. Description of the form of trees by the parameters of the tree-like body: Effects of the branching angle and the branch length on the shape of the tree-like body. J Theor Biol. Academic Press; 1971;31: 331–338. doi: 10.1016/0022-5193(71)90191-3 5557081

21. Graus RR, Macintyre IG. Light control of growth form in colonial reef corals: Computer simulation. Science (80-). 1976;193: 895–897. doi: 10.1126/science.193.4256.895 17753640

22. Merks RMH, Hoekstra AG, Kaandorp JA, Sloot PMA. Polyp oriented modelling of coral growth. J Theor Biol. 2004;228: 559–576. doi: 10.1016/j.jtbi.2004.02.020 15178203

23. Sentoku A, Ezaki Y. Regularity in budding mode and resultant growth morphology of the azooxanthellate colonial scleractinian Tubastraea coccinea. Coral Reefs. Springer-Verlag; 2012;31: 67–74. doi: 10.1007/s00338-011-0808-5

24. Ohno R, Sentoku A, Ezaki Y, Masumoto S. Modelling and Simulation of Morphogenesis in Colonial Azooxanthellate Scleractinians. Geoinformatics. 日本情報地質学会; 2016;27: 3–12. doi: 10.6010/geoinformatics.27.1_3

25. Honda H, Fisher JB. Tree branch angle: maximizing effective leaf area. Science. American Association for the Advancement of Science; 1978;199: 888–90. doi: 10.1126/science.199.4331.888 17757590

26. Honda H, Fisher JB. Ratio of tree branch lengths: The equitable distribution of leaf clusters on branches. Proc Natl Acad Sci U S A. National Academy of Sciences; 1979;76: 3875–9. doi: 10.1073/pnas.76.8.3875 16592693

27. Kanemaru N, Chiba N, Takahashi K, Saito N. Simulation of Natural Shapes of Botanical trees Based on Heliotropism. IEICE Trans Inf Syst. 1992;75: 76–85.

28. Koike F. Foliage-Crown Development and Interaction in Quercus Gilva and Q. Acuta. J Ecol. 1989;77: 92. doi: 10.2307/2260919

29. Sorrensen-Cothern KA, Ford ED, Sprugel DG. A Model of Competition Incorporating Plasticity through Modular Foliage and Crown Development. Ecol Monogr. John Wiley & Sons, Ltd; 1993;63: 277–304. doi: 10.2307/2937102

30. Takenaka A. A simulation model of tree architecture development based on growth response to local light environment. J Plant Res. Springer-Verlag; 1994;107: 321–330. doi: 10.1007/BF02344260

31. Yoshizawa D, Yokozawa H. Trees Growth Modeling in Consideration of the Photoenvironment. J Graph Sci Japan. 日本図学会; 2007;41: 3–9. doi: 10.5989/jsgs.41.3_3

32. Onoda Y, Wright IJ, Evans JR, Hikosaka K, Kitajima K, Niinemets Ü, et al. Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytol. John Wiley & Sons, Ltd (10.1111); 2017;214: 1447–1463. doi: 10.1111/nph.14496 28295374

33. Fogle CA, Nagle JL, Desai MM. Clonal interference, multiple mutations and adaptation in large asexual populations. Genetics. 2008;180: 2163–2173. doi: 10.1534/genetics.108.090019 18832359

34. Keller TE, Wilke CO, Bull JJ. INTERACTIONS BETWEEN EVOLUTIONARY PROCESSES AT HIGH MUTATION RATES. Evolution (N Y). John Wiley & Sons, Ltd (10.1111); 2012;66: 2303–2314. doi: 10.1111/j.1558-5646.2012.01596.x 22759303

35. Franke J, Klözer A, de Visser JAGM, Krug J. Evolutionary Accessibility of Mutational Pathways. Wilke CO, editor. PLoS Comput Biol. Public Library of Science; 2011;7: e1002134. doi: 10.1371/journal.pcbi.1002134 21876664

36. Yokozawa M, Kubota Y, Hara T. Crown architecture and species coexistence in plant communities. Ann Bot. Oxford University Press; 1996;78: 437–447. doi: 10.1006/anbo.1996.0140

37. Pigliucci M, Murren CJ, Schlichting CD. Phenotypic plasticity and evolution by genetic assimilation. J Exp Biol. The Company of Biologists Ltd; 2006;209: 2362–7. doi: 10.1242/jeb.02070 16731812

38. 秀一大木. 生理人類学におけるふたご研究. 日本生理人類学会誌. 日本生理人類学会; 2017;22: 97–105. doi: 10.20718/jjpa.22.2_97

39. Aerts R. Interspecific competition in natural plant communities: mechanisms, trade-offs and plant-soil feedbacks. J Exp Bot. Narnia; 1999;50: 29–37. doi: 10.1093/jxb/50.330.29

40. Fox JF. Alternation and Coexistence of Tree Species. Am Nat. University of Chicago Press; 1977;111: 69–89. doi: 10.1086/283138

41. Grubb PJ. THE MAINTENANCE OF SPECIES-RICHNESS IN PLANT COMMUNITIES: THE IMPORTANCE OF THE REGENERATION NICHE. Biol Rev. John Wiley & Sons, Ltd (10.1111); 1977;52: 107–145. doi: 10.1111/j.1469-185X.1977.tb01347.x


Článek vyšel v časopise

PLOS One


2019 Číslo 10