Electroencephalographic features of discontinuous activity in anesthetized infants and children

Autoři: Uday Agrawal aff001;  Charles B. Berde aff001;  Laura Cornelissen aff001
Působiště autorů: Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America aff001
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223324



Discontinuous electroencephalographic activity in children is thought to reflect brain inactivation. Discontinuity has been observed in states of pathology, where it is predictive of adverse neurological outcome, as well as under general anesthesia. Though in preterm-infants discontinuity reflects normal brain development, less is known regarding its role in term children, particularly in the setting of general anesthesia. Here, we conduct a post-hoc exploratory analysis to investigate the spectral features of discontinuous activity in children under general anesthesia.


We previously recorded electroencephalography in children less than forty months of age under general anesthesia (n = 65). We characterized the relationship between age, anesthetic depth, and discontinuous activity, and used multitaper spectral methods to compare the power spectra of subjects with (n = 35) and without (n = 30) discontinuous activity. In the subjects with discontinuous activity, we examined the amplitude and power spectra associated with the discontinuities and analyzed how these variables varied with age.


Cumulative time of discontinuity was associated with increased anesthetic depth and younger age. In particular, age-matched children with discontinuity received higher doses of propofol during induction as compared with children without discontinuity. In the tens of seconds preceding the onset of discontinuous activity, there was a decrease in high-frequency power in children four months and older that could be visually observed with spectrograms. During discontinuous activity, there were distinctive patterns of amplitude, spectral edge, and power in canonical frequency bands that varied with age. Notably, there was a decline in spectral edge in the seconds immediately following each discontinuity.


Discontinuous activity in children reflects a state of a younger or more deeply anesthetized brain, and characteristic features of discontinuous activity evolve with age and may reflect neurodevelopment.

Klíčová slova:

Age groups – Anesthesia – Electrodes – Electroencephalography – Infants – Anesthetics – General anesthesia – Anesthesiology monitoring


1. Tsuchida TN, Wusthoff CJ, Shellhaas RA, Abend NS, Hahn CD, Sullivan JE, et al. American clinical neurophysiology society standardized EEG terminology and categorization for the description of continuous EEG monitoring in neonates: report of the American Clinical Neurophysiology Society critical care monitoring committee. J Clin Neurophysiol Off Publ Am Electroencephalogr Soc. 2013;30: 161–173. doi: 10.1097/WNP.0b013e3182872b24 23545767

2. Volpe JJ. Neurology of the Newborn. 5th ed. Elsevier; 2008.

3. Iyer KK, Roberts JA, Metsäranta M, Finnigan S, Breakspear M, Vanhatalo S. Novel features of early burst suppression predict outcome after birth asphyxia. Ann Clin Transl Neurol. 2014;1: 209–214. doi: 10.1002/acn3.32 25356399

4. Japaridze N, Muthuraman M, Reinicke C, Moeller F, Anwar AR, Mideksa KG, et al. Neuronal Networks during Burst Suppression as Revealed by Source Analysis. PLoS ONE. 2015;10. doi: 10.1371/journal.pone.0123807 25927439

5. Chalia M, Lee CW, Dempsey LA, Edwards AD, Singh H, Michell AW, et al. Hemodynamic response to burst-suppressed and discontinuous electroencephalography activity in infants with hypoxic ischemic encephalopathy. Neurophotonics. 2016;3: 031408. doi: 10.1117/1.NPh.3.3.031408 27446969

6. Seltzer L, Swartz MF, Kwon J, Burchfiel J, Cholette JM, Wang H, et al. Neurodevelopmental outcomes after neonatal cardiac surgery: Role of cortical isoelectric activity. J Thorac Cardiovasc Surg. 2016;151: 1137–1144. doi: 10.1016/j.jtcvs.2015.10.065 26707762

7. Menache CC, Bourgeois BFD, Volpe JJ. Prognostic value of neonatal discontinuous EEG. Pediatr Neurol. 2002;27: 93–101. doi: 10.1016/s0887-8994(02)00396-x 12213608

8. Davidson AJ, Sale SM, Wong C, McKeever S, Sheppard S, Chan Z, et al. The electroencephalograph during anesthesia and emergence in infants and children. Paediatr Anaesth. 2008;18: 60–70. doi: 10.1111/j.1460-9592.2007.02359.x 18095968

9. Sonkajärvi E, Alahuhta S, Suominen K, Hakalax N, Vakkuri A, Löppönen H, et al. Topographic electroencephalogram in children during mask induction of anaesthesia with sevoflurane. Acta Anaesthesiol Scand. 2009;53: 77–84. doi: 10.1111/j.1399-6576.2008.01725.x 19032567

10. Hayashi K, Shigemi K, Sawa T. Neonatal electroencephalography shows low sensitivity to anesthesia. Neurosci Lett. 2012;517: 87–91. doi: 10.1016/j.neulet.2012.04.028 22542892

11. Cornelissen L, Bergin AM, Lobo K, Donado C, Soul JS, Berde CB. Electroencephalographic discontinuity during sevoflurane anesthesia in infants and children. Paediatr Anaesth. 2017;27: 251–262. doi: 10.1111/pan.13061 28177176

12. Stolwijk LJ, Weeke LC, de Vries LS, van Herwaarden MYA, van der Zee DC, van der Werff DBM, et al. Effect of general anesthesia on neonatal aEEG-A cohort study of patients with non-cardiac congenital anomalies. PloS One. 2017;12: e0183581. doi: 10.1371/journal.pone.0183581 28859124

13. Purdon PL, Sampson A, Pavone KJ, Brown EN. Clinical Electroencephalography for Anesthesiologists: Part I: Background and Basic Signatures. Anesthesiology. 2015;123: 937–960. doi: 10.1097/ALN.0000000000000841 26275092

14. Cornelissen L, Kim S-E, Purdon PL, Brown EN, Berde CB. Age-dependent electroencephalogram (EEG) patterns during sevoflurane general anesthesia in infants. eLife. 2015;4: e06513. doi: 10.7554/eLife.06513 26102526

15. Cornelissen L, Kim S-E, Lee JM, Purdon PL, Brown EN, Berde CB. Electroencephalographic markers of brain development during sevoflurane anesthesia in children aged 0 to 3 years old. Br J Anaesth. 2018; 165902. doi: 10.1101/165902

16. Davidson A, Skowno J. Neuromonitoring in paediatric anaesthesia. Curr Opin Anaesthesiol. 2019;32: 370–376. doi: 10.1097/ACO.0000000000000732 30893116

17. Lewis LD, Ching S, Weiner VS, Peterfreund RA, Eskandar EN, Cash SS, et al. Local cortical dynamics of burst suppression in the anaesthetized brain. Brain J Neurol. 2013;136: 2727–2737. doi: 10.1093/brain/awt174 23887187

18. Bokil H, Andrews P, Kulkarni JE, Mehta S, Mitra PP. Chronux: a platform for analyzing neural signals. J Neurosci Methods. 2010;192: 146–151. doi: 10.1016/j.jneumeth.2010.06.020 20637804

19. Kirch C, Politis DN. TFT-bootstrap: Resampling time series in the frequency domain to obtain replicates in the time domain. Ann Stat. 2011;39: 1427–1470. doi: 10.1214/10-AOS868

20. Akeju O, Pavone KJ, Thum JA, Firth PG, Westover MB, Puglia M, et al. Age-dependency of sevoflurane-induced electroencephalogram dynamics in children. Br J Anaesth. 2015;115 Suppl 1: i66–i76. doi: 10.1093/bja/aev114 26174303

21. Cornelissen L, Donado C, Lee JM, Liang NE, Mills I, Tou A, et al. Clinical signs and electroencephalographic patterns of emergence from sevoflurane anaesthesia in children. Eur J Anaesthesiol. 2018;35: 49–59. doi: 10.1097/EJA.0000000000000739 29120939

22. Chini M, Gretenkord S, Kostka JK, Pöpplau JA, Cornelissen L, Berde CB, et al. Neural Correlates of Anesthesia in Newborn Mice and Humans. Front Neural Circuits. 2019;13: 38. doi: 10.3389/fncir.2019.00038 31191258

23. Tau GZ, Peterson BS. Normal development of brain circuits. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2010;35: 147–168. doi: 10.1038/npp.2009.115 19794405

24. Zehendner CM, Tsohataridis S, Luhmann HJ, Yang J-W. Developmental Switch in Neurovascular Coupling in the Immature Rodent Barrel Cortex. PLoS ONE. 2013;8. doi: 10.1371/journal.pone.0080749 24224059

25. Vasung L, Abaci Turk E, Ferradal SL, Sutin J, Stout JN, Ahtam B, et al. Exploring early human brain development with structural and physiological neuroimaging. NeuroImage. 2019;187: 226–254. doi: 10.1016/j.neuroimage.2018.07.041 30041061

26. Hendrikx D, Smits A, Lavanga M, De Wel O, Thewissen L, Jansen K, et al. Measurement of Neurovascular Coupling in Neonates. Front Physiol. 2019;10: 65. doi: 10.3389/fphys.2019.00065 30833901

27. Chan MTV, Cheng BCP, Lee TMC, Gin T, CODA Trial Group. BIS-guided anesthesia decreases postoperative delirium and cognitive decline. J Neurosurg Anesthesiol. 2013;25: 33–42. doi: 10.1097/ANA.0b013e3182712fba 23027226

28. Soehle M, Dittmann A, Ellerkmann RK, Baumgarten G, Putensen C, Guenther U. Intraoperative burst suppression is associated with postoperative delirium following cardiac surgery: a prospective, observational study. BMC Anesthesiol. 2015;15: 61. doi: 10.1186/s12871-015-0051-7 25928189

29. Hesse S, Kreuzer M, Hight D, Gaskell A, Devari P, Singh D, et al. Association of electroencephalogram trajectories during emergence from anaesthesia with delirium in the postanaesthesia care unit: an early sign of postoperative complications. Br J Anaesth. 2019;122: 622–634. doi: 10.1016/j.bja.2018.09.016 30915984

30. Yuan I, Olbrecht VA, Mensinger JL, Zhang B, Davidson AJ, von Ungern-Sternberg BS, et al. Statistical Analysis Plan for “An international multicenter study of isoelectric electroencephalography events in infants and young children during anesthesia for surgery.” Paediatr Anaesth. 2019;29: 243–249. doi: 10.1111/pan.13589 30664323

31. Vutskits L, Xie Z. Lasting impact of general anaesthesia on the brain: mechanisms and relevance. Nat Rev Neurosci. 2016;17: 705–717. doi: 10.1038/nrn.2016.128 27752068

32. Lee JM, Akeju O, Terzakis K, Pavone KJ, Deng H, Houle TT, et al. A Prospective Study of Age-dependent Changes in Propofol-induced Electroencephalogram Oscillations in Children. Anesthesiology. 2017;127: 293–306. doi: 10.1097/ALN.0000000000001717 28657957

33. Walsh EC, Lee JM, Terzakis K, Zhou DW, Burns S, Buie TM, et al. Age-Dependent Changes in the Propofol-Induced Electroencephalogram in Children With Autism Spectrum Disorder. Front Syst Neurosci. 2018;12: 23. doi: 10.3389/fnsys.2018.00023 29988455

34. Sury MRJ, Worley A, Boyd SG. Age-related changes in EEG power spectra in infants during sevoflurane wash-out. Br J Anaesth. 2014;112: 686–694. doi: 10.1093/bja/aet409 24346023

35. Ching S, Purdon PL, Vijayan S, Kopell NJ, Brown EN. A neurophysiological-metabolic model for burst suppression. Proc Natl Acad Sci U S A. 2012;109: 3095–3100. doi: 10.1073/pnas.1121461109 22323592

36. Liu S, Ching S. Homeostatic dynamics, hysteresis and synchronization in a low-dimensional model of burst suppression. J Math Biol. 2017;74: 1011–1035. doi: 10.1007/s00285-016-1048-7 27549764

37. Kenny JD, Westover MB, Ching S, Brown EN, Solt K. Propofol and sevoflurane induce distinct burst suppression patterns in rats. Front Syst Neurosci. 2014;8. doi: 10.3389/fnsys.2014.00237 25565990

38. Chang P-S, Walker SM, Fitzgerald M. Differential Suppression of Spontaneous and Noxious-evoked Somatosensory Cortical Activity by Isoflurane in the Neonatal Rat. Anesthesiology. 2016;124: 885–898. doi: 10.1097/ALN.0000000000001017 26808637

39. Fleischmann A, Pilge S, Kiel T, Kratzer S, Schneider G, Kreuzer M. Substance-Specific Differences in Human Electroencephalographic Burst Suppression Patterns. Front Hum Neurosci. 2018;12. doi: 10.3389/fnhum.2018.00368 30297992

Článek vyšel v časopise


2019 Číslo 10