Beyond the metabolic syndrome: Visceral and marrow adipose tissues impair bone quantity and quality in Cushing’s disease

Autoři: Sérgio Luchini Batista aff001;  Iana Mizumukai de Araújo aff001;  Adriana Lelis Carvalho aff001;  Maria Augusta V. S. D. Alencar aff001;  Andressa K. Nahas aff002;  Jorge Elias, Jr aff001;  Marcello H. Nogueira-Barbosa aff001;  Carlos E. G. Salmon aff003;  Paula C. L. Elias aff001;  Ayrton C. Moreira aff001;  Margaret Castro aff001;  Francisco J. A. de Paula aff001
Působiště autorů: Department of Clinical Medicine, Ribeirão Preto Medical School, USP, Ribeirão Preto, SP, Brazil aff001;  Faculty of Public Health, USP, São Paulo, SP, Brazil aff002;  Department of Physics, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil aff003
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article


The present study was designed to evaluate the relationship between bone traits [bone mineral density (BMD) and trabecular bone score (TBS)] and the accumulation of fat in adipose tissues [abdominal subcutaneous (SAT), visceral (VAT), marrow (MAT) and intrahepatic lipids (IHL)], as well as insulin resistance, in subjects with Cushing’s disease (CD). The study included control (C = 27), paired (P = 16) and Cushing’s disease (CD = 10) groups, which underwent biochemical assessment, dual X-ray absorptiometry, TBS, and magnetic resonance imaging to determine fat deposits. The CD group showed higher serum levels of glucose and insulin, as well as HOMA-IR values, but lower circulatory levels of osteocalcin, in comparison to C and P. The CD group exhibited lower L1-L4 BMD than P (P = 1.059 ± 0.141 vs CD = 0.935 ± 0.093 g/cm2, p < 0.05) (Fig 1A). The lumbar spine BMD from the C group was similar to the other groups. TBS was lower in CD than in P and C (C = 1.512±0.077 vs P = 1.405±0.150 vs CD = 1.135±0.136; p<0.05); there was also significant difference between C and P (p<0.05). MAT, VAT, and IHL were higher in CD than in C and P (p<0.05). Considering all subjects, there was a positive association between TBS with both lumbar spine BMD (R2 = 0.45; p<0.0001) and osteocalcin (R2 = 0.44; p = 0.05). TBS was negatively associated with MAT (R2 = 0.49; p = 0.01), VAT (R2 = 0.55; p<0.05), and HOMA-IR (R2 = 0.44; p<0.01). MAT was positively related with VAT (R2 = 0.44; p<0.01) and IHL (R2 = 0.41; p<0.05). In CD, insulin resistance and adipose tissue dysfunction, including high MAT, are active players in bone deterioration, as confirmed by lower lumbar spine BMD and lower TBS. Thus, our findings point to an additional component of the already well-known complex mechanisms of osteoporosis associated with hypercortisolism.

Klíčová slova:

Adiponectin – Adipose tissue – Bone and mineral metabolism – Bone fracture – leptin – Obesity


1. Collaborators GBDO, Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. The New England journal of medicine. 2017;377(1):13–27. doi: 10.1056/NEJMoa1614362 28604169

2. Nielson CM, Marshall LM, Adams AL, LeBlanc ES, Cawthon PM, Ensrud K, et al. BMI and fracture risk in older men: the osteoporotic fractures in men study (MrOS). Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research. 2011;26(3):496–502.

3. Pivonello R, De Leo M, Cozzolino A, Colao A. The Treatment of Cushing's Disease. Endocrine reviews. 2015;36(4):385–486. doi: 10.1210/er.2013-1048 26067718

4. Mirza F, Canalis E. Management of endocrine disease: Secondary osteoporosis: pathophysiology and management. European journal of endocrinology. 2015;173(3):R131–51. doi: 10.1530/EJE-15-0118 25971649

5. Sato AY, Peacock M, Bellido T. Glucocorticoid Excess in Bone and Muscle. Clinical reviews in bone and mineral metabolism. 2018;16(1):33–47. doi: 10.1007/s12018-018-9242-3 29962904

6. Force USPST, Curry SJ, Krist AH, Owens DK, Barry MJ, Caughey AB, et al. Screening for Osteoporosis to Prevent Fractures: US Preventive Services Task Force Recommendation Statement. Jama. 2018;319(24):2521–31. doi: 10.1001/jama.2018.7498 29946735

7. Rubin MR. Skeletal fragility in diabetes. Annals of the New York Academy of Sciences. 2017;1402(1):18–30. doi: 10.1111/nyas.13463 28926113

8. Martineau P, Leslie WD, Johansson H, Harvey NC, McCloskey EV, Hans D, et al. In which patients does lumbar spine trabecular bone score (TBS) have the largest effect? Bone. 2018;113:161–8. doi: 10.1016/j.bone.2018.05.026 29802962

9. de Paula FJ, Rosen CJ. Bone Remodeling and Energy Metabolism: New Perspectives. Bone research. 2013;1(1):72–84. doi: 10.4248/BR201301005 26273493

10. Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nature medicine. 2018.

11. Russell M, Mendes N, Miller KK, Rosen CJ, Lee H, Klibanski A, et al. Visceral fat is a negative predictor of bone density measures in obese adolescent girls. The Journal of clinical endocrinology and metabolism. 2010;95(3):1247–55. doi: 10.1210/jc.2009-1475 20080853

12. de Paula FJ, de Araujo IM, Carvalho AL, Elias J Jr., Salmon CE, Nogueira-Barbosa MH. The Relationship of Fat Distribution and Insulin Resistance with Lumbar Spine Bone Mass in Women. PloS one. 2015;10(6):e0129764. doi: 10.1371/journal.pone.0129764 26067489

13. de Araujo IM, Salmon CE, Nahas AK, Nogueira-Barbosa MH, Elias J Jr., de Paula FJ. Marrow adipose tissue spectrum in obesity and type 2 diabetes mellitus. European journal of endocrinology. 2017;176(1):21–30. doi: 10.1530/EJE-16-0448 27707768

14. Geer EB, Shen W, Gallagher D, Punyanitya M, Looker HC, Post KD, et al. MRI assessment of lean and adipose tissue distribution in female patients with Cushing's disease. Clinical endocrinology. 2010;73(4):469–75. doi: 10.1111/j.1365-2265.2010.03829.x 20550536

15. Geer EB, Shen W, Strohmayer E, Post KD, Freda PU. Body composition and cardiovascular risk markers after remission of Cushing's disease: a prospective study using whole-body MRI. The Journal of clinical endocrinology and metabolism. 2012;97(5):1702–11. doi: 10.1210/jc.2011-3123 22419708

16. Parreiras ESLT, de Araujo IM, Elias J Jr., Nogueira-Barbosa MH, Suen VMM, Marchini JS, et al. Short bowel syndrome: influence of nutritional therapy and incretin GLP1 on bone marrow adipose tissue. Annals of the New York Academy of Sciences. 2018;1415(1):47–56. doi: 10.1111/nyas.13657 29509291

17. Bredella MA, Fazeli PK, Daley SM, Miller KK, Rosen CJ, Klibanski A, et al. Marrow fat composition in anorexia nervosa. Bone. 2014;66:199–204. doi: 10.1016/j.bone.2014.06.014 24953711

18. Vande Berg BC, Malghem J, Lecouvet FE, Devogelaer JP, Maldague B, Houssiau FA. Fat conversion of femoral marrow in glucocorticoid-treated patients: a cross-sectional and longitudinal study with magnetic resonance imaging. Arthritis and rheumatism. 1999;42(7):1405–11. doi: 10.1002/1529-0131(199907)42:7<1405::AID-ANR14>3.0.CO;2-W 10403268

19. Castro M, Moreira AC. Screening and diagnosis of Cushing's syndrome. Arquivos brasileiros de endocrinologia e metabologia. 2007;51(8):1191–8. doi: 10.1590/s0004-27302007000800004 18209856

20. Elias PC, Martinez EZ, Barone BF, Mermejo LM, Castro M, Moreira AC. Late-night salivary cortisol has a better performance than urinary free cortisol in the diagnosis of Cushing's syndrome. The Journal of clinical endocrinology and metabolism. 2014;99(6):2045–51. doi: 10.1210/jc.2013-4262 24628557

21. Castro M, Elias PC, Quidute AR, Halah FP, Moreira AC. Out-patient screening for Cushing's syndrome: the sensitivity of the combination of circadian rhythm and overnight dexamethasone suppression salivary cortisol tests. The Journal of clinical endocrinology and metabolism. 1999;84(3):878–82. doi: 10.1210/jcem.84.3.5521 10084565

22. Lansang MC, Williams GH, Carroll JS. Correlation between the glucose clamp technique and the homeostasis model assessment in hypertension. American journal of hypertension. 2001;14(1):51–3. doi: 10.1016/s0895-7061(00)01229-2 11206679

23. Maciel JG, de Araujo IM, Carvalho AL, Simao MN, Bastos CM, Troncon LE, et al. Marrow Fat Quality Differences by Sex in Healthy Adults. Journal of clinical densitometry: the official journal of the International Society for Clinical Densitometry. 2017;20(1):106–13.

24. Ghiringhello MT, Vieira JG, Tachibana TT, Ferrer C, Maciel RM, Amioka PH, et al. Distribution of HOMA-IR in Brazilian subjects with different body mass indexes. Arquivos brasileiros de endocrinologia e metabologia. 2006;50(3):573–4. doi: 10.1590/s0004-27302006000300025 16937003

25. Pappachan JM, Hariman C, Edavalath M, Waldron J, Hanna FW. Cushing's syndrome: a practical approach to diagnosis and differential diagnoses. Journal of clinical pathology. 2017;70(4):350–9. doi: 10.1136/jclinpath-2016-203933 28069628

26. Vinolas H, Grouthier V, Mehsen-Cetre N, Boisson A, Winzenrieth R, Schaeverbeke T, et al. Assessment of vertebral microarchitecture in overt and mild Cushing's syndrome using trabecular bone score. Clinical endocrinology. 2018.

27. Adler RA. Glucocorticoid-Induced Osteoporosis: Management Challenges in Older Patients. Journal of clinical densitometry: the official journal of the International Society for Clinical Densitometry. 2018.

28. Kim JH, Kwak MK, Ahn SH, Kim H, Cho YY, Suh S, et al. Alteration in skeletal muscle mass in women with subclinical hypercortisolism. Endocrine. 2018;61(1):134–43. doi: 10.1007/s12020-018-1598-0 29717464

29. Scott D, Chandrasekara SD, Laslett LL, Cicuttini F, Ebeling PR, Jones G. Associations of Sarcopenic Obesity and Dynapenic Obesity with Bone Mineral Density and Incident Fractures Over 5–10 Years in Community-Dwelling Older Adults. Calcified tissue international. 2016;99(1):30–42. doi: 10.1007/s00223-016-0123-9 26939775

30. Hong AR, Kim JH, Kim SW, Kim SY, Shin CS. Trabecular bone score as a skeletal fragility index in acromegaly patients. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2016;27(3):1123–9.

31. Xue Y, Baker AL, Nader S, Orlander P, Sanchez AJ, Kellam J, et al. Lumbar Spine Trabecular Bone Score (TBS) Reflects Diminished Bone Quality in Patients With Diabetes Mellitus and Oral Glucocorticoid Therapy. Journal of clinical densitometry: the official journal of the International Society for Clinical Densitometry. 2018;21(2):185–92.

32. Tay YD, Cusano NE, Rubin MR, Williams J, Omeragic B, Bilezikian JP. Trabecular Bone Score in Obese and Nonobese Subjects With Primary Hyperparathyroidism Before and After Parathyroidectomy. The Journal of clinical endocrinology and metabolism. 2018;103(4):1512–21. doi: 10.1210/jc.2017-02169 29373705

33. Shevroja E, Lamy O, Kohlmeier L, Koromani F, Rivadeneira F, Hans D. Use of Trabecular Bone Score (TBS) as a Complementary Approach to Dual-energy X-ray Absorptiometry (DXA) for Fracture Risk Assessment in Clinical Practice. Journal of clinical densitometry: the official journal of the International Society for Clinical Densitometry. 2017;20(3):334–45.

34. Harvey NC, Gluer CC, Binkley N, McCloskey EV, Brandi ML, Cooper C, et al. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice. Bone. 2015;78:216–24. doi: 10.1016/j.bone.2015.05.016 25988660

35. Szappanos A, Toke J, Lippai D, Patocs A, Igaz P, Szucs N, et al. Bone turnover in patients with endogenous Cushing's syndrome before and after successful treatment. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2010;21(4):637–45.

36. Cawthorn WP, Scheller EL, Parlee SD, Pham HA, Learman BS, Redshaw CM, et al. Expansion of Bone Marrow Adipose Tissue During Caloric Restriction Is Associated With Increased Circulating Glucocorticoids and Not With Hypoleptinemia. Endocrinology. 2016;157(2):508–21. doi: 10.1210/en.2015-1477 26696121

37. Romagnoli E, Lubrano C, Carnevale V, Costantini D, Nieddu L, Morano S, et al. Assessment of trabecular bone score (TBS) in overweight/obese men: effect of metabolic and anthropometric factors. Endocrine. 2016;54(2):342–7. doi: 10.1007/s12020-016-0857-1 26815904

38. Kim JH, Choi HJ, Ku EJ, Hong AR, Kim KM, Kim SW, et al. Regional body fat depots differently affect bone microarchitecture in postmenopausal Korean women. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2016;27(3):1161–8.

39. Guedes JAC, Esteves JV, Morais MR, Zorn TM, Furuya DT. Osteocalcin improves insulin resistance and inflammation in obese mice: Participation of white adipose tissue and bone. Bone. 2018;115:68–82. doi: 10.1016/j.bone.2017.11.020 29183784

40. Mendonca ML, Batista SL, Nogueira-Barbosa MH, Salmon CE, Paula FJ. Primary Hyperparathyroidism: The Influence of Bone Marrow Adipose Tissue on Bone Loss and of Osteocalcin on Insulin Resistance. Clinics. 2016;71(8):464–9. doi: 10.6061/clinics/2016(08)09 27626477

Článek vyšel v časopise


2019 Číslo 10
Nejčtenější tento týden