Age, body weight and ovarian function affect oocyte size and morphology in non-PCOS patients undergoing intracytoplasmic sperm injection (ICSI)


Autoři: A. Weghofer aff001;  V. A. Kushnir aff002;  S. K. Darmon aff002;  H. Jafri aff002;  E. Lazzaroni-Tealdi aff002;  L. Zhang aff002;  D. F. Albertini aff002;  D. H. Barad aff002;  N. Gleicher aff001
Působiště autorů: Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer, Guertel, Vienna, Austria aff001;  The Center for Human Reproduction, New York, New York, United States of America aff002;  Department of Obstetrics and Gynecology, Wake Forest University, Winston-Salem, North Carolina, United States of America aff003;  Stem Cell Biology and Molecular Embryology Laboratory, The Rockefeller University, New York, New York, United States of America aff004;  The Foundation for Reproductive Medicine, New York, N.Y., United States of America aff005
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0222390

Souhrn

The size of oocytes was previously reported to be smaller in obese women with polycystic ovary syndrome (PCOS). In the present prospective cohort study, we sought to determine whether oocyte size and morphology are associated with patient characteristics in non-PCOS women. Oocyte and oolemmal diameter were measured, enlarged perivitelline space (PVS) and ooplasmic granulation were assessed in 308 MII oocytes from 77 IVF/ICSI couples. Statistical analysis was undertaken using SAS version 9.4 (SAS institute Inc., USA). Continuous values are presented as mean ± SD and compared using a two-sample t-test or Mann-Whitney U test as appropriate. Categorical parameters are presented as proportions and compared using a Fisher exact test. Logistic and linear regression models were used to control for the effect of age for categorical and continuous variables respectively. P-value < 0.05 was considered statistically significant. Patients presented with a mean age of 40.3±5.0 years, had a BMI of 25.1±6.1 kg/m2, median AMH levels of 0.6 ng/ml and produced a median of 4 oocytes. Mean total oocyte diameter was 163.2±7.4 μm (range 145.8–182.1 μm), while oolemmal diameter was 109.4±4.1 μm (range 98.5–122.3 μm). After adjusting for age and ovarian reserve increasing BMI was associated with decreased total oocyte diameter (p<0.05). Total oocyte diameter was also inversely associated with AMH levels (p = 0.03) and oocyte yield (p = 0.04). In contrast to total oocyte diameter, oolemmal diameter was not related to patient characteristics. Younger women and those with large oocyte yields demonstrated fewer oocytes with ooplasmic granulation (p<0.05 and p = 0.01). After adjustments for age, ooplasmic granulation was also less frequently observed in oocytes from women with higher AMH (p = 0.03) and increasing BMI (p<0.01). Fertilization was more likely in oocytes with larger oolemmal diameter (p = 0.008). Embryos from oocytes with larger total and ooplasmic diameters were more likely to be transferred or frozen (p = 0.004 and p = 0.01). In non-PCOS infertile women, BMI and ovarian function relate to total oocyte diameter. These results expand on previously observed associations between oocyte size and BMI in women with PCOS. They indicate the importance of detailed oocyte assessments, which may aid the currently used criteria for embryo selection and help to better understand how oocyte status is associated with later embryo development.

Klíčová slova:

Embryos – Fertilization – Granulosa cells – Obesity – Oocytes – Polycystic ovary syndrome – Pregnancy – Embryo development


Zdroje

1. Niinimaki M, Veleva Z, Martikainen H. Embryo quality is the main factor affecting cumulative live birth rate after elective single embryo transfer in fresh stimulation cycles. Eur J Obstet Gynecol Reprod Biol. 2015;194:131–5. doi: 10.1016/j.ejogrb.2015.08.031 26366790.

2. Luke B, Brown MB, Stern JE, Jindal SK, Racowsky C, Ball GD. Using the Society for Assisted Reproductive Technology Clinic Outcome System morphological measures to predict live birth after assisted reproductive technology. Fertil Steril. 2014;102(5):1338–44. doi: 10.1016/j.fertnstert.2014.07.1242 25217871; PubMed Central PMCID: PMC4252875.

3. Bisignano A, Wells D, Harton G, Munne S. PGD and aneuploidy screening for 24 chromosomes: advantages and disadvantages of competing platforms. Reproductive biomedicine online. 2011;23(6):677–85. Epub 2011/08/23. doi: 10.1016/j.rbmo.2011.05.017 21856229.

4. Bisignano A, Wells D, Harton G, Munne S. Reply: PGD and aneuploidy screening for 24 chromosomes by genome-wide SNP analysis: a responsible path towards greater utility. Reproductive biomedicine online. 2012;24(1):4–5. Epub 2011/12/06. doi: 10.1016/j.rbmo.2011.11.004 22137246.

5. Mastenbroek S, van der Veen F, Aflatoonian A, Shapiro B, Bossuyt P, Repping S. Embryo selection in IVF. Hum Reprod. 2011;26(5):964–6. doi: 10.1093/humrep/der050 21372045.

6. Armstrong S, Vail A, Mastenbroek S, Jordan V, Farquhar C. Time-lapse in the IVF-lab: how should we assess potential benefit? Hum Reprod. 2015;30(1):3–8. doi: 10.1093/humrep/deu250 25316446.

7. Azzarello A, Hoest T, Mikkelsen AL. The impact of pronuclei morphology and dynamicity on live birth outcome after time-lapse culture. Hum Reprod. 2012;27(9):2649–57. doi: 10.1093/humrep/des210 22740496.

8. Rosenwaks Z, Handyside AH. Is preimplantation genetic testing for aneuploidy an essential tool for embryo selection or a costly 'add-on' of no clinical benefit? Fertil Steril. 2018;110(3):351–2. doi: 10.1016/j.fertnstert.2018.06.001 30098681.

9. Eastick J, Venetis C, Cooke S, Storr A, Susetio D, Chapman M. Is early embryo development as observed by time-lapse microscopy dependent on whether fresh or frozen sperm was used for ICSI? A cohort study. J Assist Reprod Genet. 2017;34(6):733–40. doi: 10.1007/s10815-017-0928-0 28455755; PubMed Central PMCID: PMC5445057.

10. Braga DP, Setti AS, Figueira Rde C, Machado RB, Iaconelli A Jr., Borges E Jr. Influence of oocyte dysmorphisms on blastocyst formation and quality. Fertil Steril. 2013;100(3):748–54. doi: 10.1016/j.fertnstert.2013.05.021 23768986.

11. Sagi-Dain L, Sagi S, Dirnfeld M. Effect of paternal age on reproductive outcomes in oocyte donation model: a systematic review. Fertil Steril. 2015;104(4):857–65 e1. doi: 10.1016/j.fertnstert.2015.06.036 26215757.

12. Wilding M, Di Matteo L, D'Andretti S, Montanaro N, Capobianco C, Dale B. An oocyte score for use in assisted reproduction. J Assist Reprod Genet. 2007;24(8):350–8. doi: 10.1007/s10815-007-9143-8 17629723; PubMed Central PMCID: PMC3454945.

13. Lazzaroni-Tealdi E, Barad DH, Albertini DF, Yu Y, Kushnir VA, Russell H, et al. Oocyte Scoring Enhances Embryo-Scoring in Predicting Pregnancy Chances with IVF Where It Counts Most. PLoS One. 2015;10(12):e0143632. doi: 10.1371/journal.pone.0143632 26630267; PubMed Central PMCID: PMC4668065.

14. Marquard KL, Stephens SM, Jungheim ES, Ratts VS, Odem RR, Lanzendorf S, et al. Polycystic ovary syndrome and maternal obesity affect oocyte size in in vitro fertilization/intracytoplasmic sperm injection cycles. Fertil Steril. 2011;95(6):2146–9, 9 e1. doi: 10.1016/j.fertnstert.2010.10.026 21071018; PubMed Central PMCID: PMC3684964.

15. Atzmon Y, Shoshan-Karchovsky E, Michaeli M, Aslih N, Shrem G, Ellenbogen A, et al. Obesity results with smaller oocyte in in vitro fertilization/intracytoplasmic sperm injection cycles-a prospective study. J Assist Reprod Genet. 2017;34(9):1145–51. doi: 10.1007/s10815-017-0975-6 28624860; PubMed Central PMCID: PMC5581790.

16. Colton SA, Pieper GM, Downs SM. Altered meiotic regulation in oocytes from diabetic mice. Biol Reprod. 2002;67(1):220–31. doi: 10.1095/biolreprod67.1.220 12080021.

17. Anguita B, Jimenez-Macedo AR, Izquierdo D, Mogas T, Paramio MT. Effect of oocyte diameter on meiotic competence, embryo development, p34 (cdc2) expression and MPF activity in prepubertal goat oocytes. Theriogenology. 2007;67(3):526–36. doi: 10.1016/j.theriogenology.2006.09.003 17014901.

18. Otoi T, Fujii M, Tanaka M, Ooka A, Suzuki T. Oocyte diameter in relation to meiotic competence and sperm penetration. Theriogenology. 2000;54(4):535–42. doi: 10.1016/s0093-691x(00)00368-x 11071127.

19. Carabatsos MJ, Elvin J, Matzuk MM, Albertini DF. Characterization of oocyte and follicle development in growth differentiation factor-9-deficient mice. Dev Biol. 1998;204(2):373–84. doi: 10.1006/dbio.1998.9087 9882477.

20. Carabatsos MJ, Sellitto C, Goodenough DA, Albertini DF. Oocyte-granulosa cell heterologous gap junctions are required for the coordination of nuclear and cytoplasmic meiotic competence. Dev Biol. 2000;226(2):167–79. doi: 10.1006/dbio.2000.9863 11023678.

21. Rotterdam EA-SPCWG. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81(1):19–25. doi: 10.1016/j.fertnstert.2003.10.004 14711538.

22. Gu L, Liu H, Gu X, Boots C, Moley KH, Wang Q. Metabolic control of oocyte development: linking maternal nutrition and reproductive outcomes. Cell Mol Life Sci. 2015;72(2):251–71. doi: 10.1007/s00018-014-1739-4 25280482; PubMed Central PMCID: PMC4389777.

23. Barrett SL, Albertini DF. Cumulus cell contact during oocyte maturation in mice regulates meiotic spindle positioning and enhances developmental competence. J Assist Reprod Genet. 2010;27(1):29–39. doi: 10.1007/s10815-009-9376-9 20039198; PubMed Central PMCID: PMC2826619.

24. Valeri C, Pappalardo S, De Felici M, Manna C. Correlation of oocyte morphometry parameters with woman's age. J Assist Reprod Genet. 2011;28(6):545–52. doi: 10.1007/s10815-011-9555-3 21468654; PubMed Central PMCID: PMC3158254.

25. Andux S, Ellis RE. Apoptosis maintains oocyte quality in aging Caenorhabditis elegans females. PLoS Genet. 2008;4(12):e1000295. doi: 10.1371/journal.pgen.1000295 19057674; PubMed Central PMCID: PMC2585808.

26. Wu YG, Barad DH, Kushnir VA, Lazzaroni E, Wang Q, Albertini DF, et al. Aging-related premature luteinization of granulosa cells is avoided by early oocyte retrieval. J Endocrinol. 2015;226(3):167–80. doi: 10.1530/JOE-15-0246 26264981.

27. Sanfins A, Rodrigues P, Albertini DF. GDF-9 and BMP-15 direct the follicle symphony. J Assist Reprod Genet. 2018. doi: 10.1007/s10815-018-1268-4 30039232.

28. Albertini DF. The Mammalian Oocyte. In: Plant T.M. ZAJ, editor. Knobil and Neill’s Physiology of Reproduction. Fourth Edition ed: Elsevier inc.; 2015. p. 59–97.

29. Kaur S, Archer KJ, Devi MG, Kriplani A, Strauss JF 3rd, Singh R. Differential gene expression in granulosa cells from polycystic ovary syndrome patients with and without insulin resistance: identification of susceptibility gene sets through network analysis. J Clin Endocrinol Metab. 2012;97(10):E2016–21. doi: 10.1210/jc.2011-3441 22904171; PubMed Central PMCID: PMC3674289.

30. Keefe DL, Niven-Fairchild T, Powell S, Buradagunta S. Mitochondrial deoxyribonucleic acid deletions in oocytes and reproductive aging in women. Fertil Steril. 1995;64(3):577–83. 7641914.

31. Tatone C, Heizenrieder T, Di Emidio G, Treffon P, Amicarelli F, Seidel T, et al. Evidence that carbonyl stress by methylglyoxal exposure induces DNA damage and spindle aberrations, affects mitochondrial integrity in mammalian oocytes and contributes to oocyte ageing. Hum Reprod. 2011;26(7):1843–59. doi: 10.1093/humrep/der140 21558076.

32. Dumollard R, Ward Z, Carroll J, Duchen MR. Regulation of redox metabolism in the mouse oocyte and embryo. Development. 2007;134(3):455–65. doi: 10.1242/dev.02744 17185319.

33. Robker RL, Akison LK, Bennett BD, Thrupp PN, Chura LR, Russell DL, et al. Obese women exhibit differences in ovarian metabolites, hormones, and gene expression compared with moderate-weight women. J Clin Endocrinol Metab. 2009;94(5):1533–40. doi: 10.1210/jc.2008-2648 19223519.

34. Leary C, Leese HJ, Sturmey RG. Human embryos from overweight and obese women display phenotypic and metabolic abnormalities. Hum Reprod. 2015;30(1):122–32. doi: 10.1093/humrep/deu276 25391239.


Článek vyšel v časopise

PLOS One


2019 Číslo 10