#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Facile assembly of an affordable miniature multicolor fluorescence microscope made of 3D-printed parts enables detection of single cells


Autoři: Samuel B. Tristan-Landin aff001;  Alan M. Gonzalez-Suarez aff001;  Rocio J. Jimenez-Valdes aff001;  Jose L. Garcia-Cordero aff001
Působiště autorů: Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del IPN, Parque PIIT, Apodaca, Nuevo León, Mexico aff001
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0215114

Souhrn

Fluorescence microscopy is one of the workhorses of biomedical research and laboratory diagnosis; however, their cost, size, maintenance, and fragility has prevented their adoption in developing countries or low-resource settings. Although significant advances have decreased their size, cost and accessibility, their designs and assembly remain rather complex. Here, inspired on the simple mechanism from a nut and a bolt, we report the construction of a portable fluorescence microscope that operates in bright-field mode and in three fluorescence channels: UV, green, and red. It is assembled in under 10 min from only six 3D printed parts, basic electronic components, a microcomputer (Raspberry Pi) and a camera, all of which can be readily purchased in most locations or online for US $122. The microcomputer was programmed in Python language to capture time-lapse images and videos. Resolution and illumination conditions of the microscope were characterized, and its performance was compared with a high-end fluorescence microscope in bright-field and fluorescence mode. We demonstrate that our miniature microscope can resolve and track single cells in both modes. The instructions on how to assemble the microscope are shown in a video, and the software to control it and the design files of the 3D-printed parts are freely available online. Our portable microscope is ideal in applications where space is at a premium, such as lab-on-a-chips or space missions, and can find applications in basic and clinical research, diagnostics, telemedicine and in educational settings.

Klíčová slova:

3D printing – Bright field imaging – Fluorescence imaging – Fluorescence microscopy – Microfluidics – Optical lenses – Bright field microscopy – Video microscopy


Zdroje

1. Agard DA, Hiraoka Y, Shaw P, Sedat JW. Chapter 13 Fluorescence Microscopy in Three Dimensions. Methods in Cell Biology. 1989. pp. 353–377. doi: 10.1016/s0091-679x(08)60986-3 2494418

2. Wessels JT, Pliquett U, Wouters FS. Light-emitting diodes in modern microscopy-from David to Goliath? Cytom Part A. 2012;81A: 188–197. doi: 10.1002/cyto.a.22023 22290727

3. Breslauer DN, Maamari RN, Switz NA, Lam WA, Fletcher DA. Mobile Phone Based Clinical Microscopy for Global Health Applications. Pai M, editor. PLoS One. 2009;4: e6320. doi: 10.1371/journal.pone.0006320 19623251

4. Miller AR, Davis GL, Oden ZM, Razavi MR, Fateh A, Ghazanfari M, et al. Portable, Battery-Operated, Low-Cost, Bright Field and Fluorescence Microscope. Doherty TM, editor. PLoS One. 2010;5: e11890. doi: 10.1371/journal.pone.0011890 20694194

5. Schaefer S, Boehm SA, Chau KJ. Automated, portable, low-cost bright-field and fluorescence microscope with autofocus and autoscanning capabilities. Appl Opt. 2012;51 : 2581. doi: 10.1364/AO.51.002581 22614477

6. Jin D, Wong D, Li J, Luo Z, Guo Y, Liu B, et al. Compact Wireless Microscope for In-Situ Time Course Study of Large Scale Cell Dynamics within an Incubator. Sci Rep. 2015;5 : 18483. doi: 10.1038/srep18483 26681552

7. Coloma J, Harris E. Innovative low cost technologies for biomedical research and diagnosis in developing countries. BMJ. 2004;329 : 1160–1162. doi: 10.1136/bmj.329.7475.1160 15539673

8. Sulkin MS, Widder E, Shao C, Holzem KM, Gloschat C, Gutbrod SR, et al. Three-dimensional printing physiology laboratory technology. Am J Physiol Circ Physiol. 2013;305: H1569–H1573. doi: 10.1152/ajpheart.00599.2013 24043254

9. Bishop GW, Satterwhite-Warden JE, Kadimisetty K, Rusling JF. 3D-printed bioanalytical devices. Nanotechnology. 2016;27 : 284002. doi: 10.1088/0957-4484/27/28/284002 27250897

10. Symes MD, Kitson PJ, Yan J, Richmond CJ, Cooper GJT, Bowman RW, et al. Integrated 3D-printed reactionware for chemical synthesis and analysis. Nat Chem. 2012;4 : 349–354. doi: 10.1038/nchem.1313 22522253

11. Hernández Vera R, Schwan E, Fatsis-Kavalopoulos N, Kreuger J. A Modular and Affordable Time-Lapse Imaging and Incubation System Based on 3D-Printed Parts, a Smartphone, and Off-The-Shelf Electronics. Doh J, editor. PLoS One. 2016;11: e0167583. doi: 10.1371/journal.pone.0167583 28002463

12. Wei Q, Qi H, Luo W, Tseng D, Ki SJ, Wan Z, et al. Fluorescent Imaging of Single Nanoparticles and Viruses on a Smart Phone. ACS Nano. 2013;7 : 9147–9155. doi: 10.1021/nn4037706 24016065

13. Zhu H, Yaglidere O, Su T-W, Tseng D, Ozcan A. Cost-effective and compact wide-field fluorescent imaging on a cell-phone. Lab Chip. 2011;11 : 315–322. doi: 10.1039/c0lc00358a 21063582

14. Cressey D. The DIY electronics transforming research. Nature. 2017;544 : 125–126. doi: 10.1038/544125a 28383014

15. Wang Z, Boddeda A, Parker B, Samanipour R, Ghosh S, Menard F, et al. A High-Resolution Minimicroscope System for Wireless Real-Time Monitoring. IEEE Trans Biomed Eng. 2018;65 : 1524–1531. doi: 10.1109/TBME.2017.2749040 28880156

16. Zhang YS, Ribas J, Nadhman A, Aleman J, Selimović Š, Lesher-Perez SC, et al. A cost-effective fluorescence mini-microscope for biomedical applications. Lab Chip. 2015;15 : 3661–3669. doi: 10.1039/c5lc00666j 26282117

17. Maia Chagas A, Prieto-Godino LL, Arrenberg AB, Baden T. The €100 lab: A 3D-printable open-source platform for fluorescence microscopy, optogenetics, and accurate temperature control during behaviour of zebrafish, Drosophila, and Caenorhabditis elegans. PLOS Biol. 2017;15: e2002702. doi: 10.1371/journal.pbio.2002702 28719603

18. Sharkey JP, Foo DCW, Kabla A, Baumberg JJ, Bowman RW. A one-piece 3D printed flexure translation stage for open-source microscopy. Rev Sci Instrum. 2016;87 : 025104. doi: 10.1063/1.4941068 26931888

19. Cybulski JS, Clements J, Prakash M. Foldscope: Origami-Based Paper Microscope. Martens L, editor. PLoS One. 2014;9: e98781. doi: 10.1371/journal.pone.0098781 24940755

20. Gonzalez-Suarez AM, Peña-del Castillo JG, Hernández-Cruz A, Garcia-Cordero JL. Dynamic Generation of Concentration -⁠ and Temporal-Dependent Chemical Signals in an Integrated Microfluidic Device for Single-Cell Analysis. Anal Chem. 2018;90 : 8331–8336. doi: 10.1021/acs.analchem.8b02442 29916698

21. Nuñez I, Matute T, Herrera R, Keymer J, Marzullo T, Rudge T, et al. Low cost and open source multi-fluorescence imaging system for teaching and research in biology and bioengineering. Gilestro GF, editor. PLoS One. 2017;12: e0187163. doi: 10.1371/journal.pone.0187163 29140977

22. Switz NA, D’Ambrosio M V., Fletcher DA. Low-Cost Mobile Phone Microscopy with a Reversed Mobile Phone Camera Lens. Pai M, editor. PLoS One. 2014;9: e95330. doi: 10.1371/journal.pone.0095330 24854188

23. Kim SB, Koo K, Bae H, Dokmeci MR, Hamilton G a, Bahinski A, et al. A mini-microscope for in situ monitoring of cells. Lab Chip. 2012;12 : 3976–82. doi: 10.1039/c2lc40345e 22911426

24. Jewett JW., Serway RA. Image Formation. Physics for Scientists and Engineers with Modern Physics. 7th ed. Cengage Learning EMEA; 2008. pp. 1008–1050.

25. DeRose JA, Doppler M. Guidelines for Understanding Magnification in the Modern Digital Microscope Era. Micros Today. 2018;26 : 20–33. doi: 10.1017/S1551929518000688

26. Peli E. Contrast in complex images. J Opt Soc Am A. 1990;7 : 2032. doi: 10.1364/JOSAA.7.002032 2231113

27. Taylor DL. Chapter 13 Basic Fluorescence Microscopy. Methods in Cell Biology. 1988. pp. 207–237. doi: 10.1016/S0091-679X(08)60196-X

28. Bosse JB, Tanneti NS, Hogue IB, Enquist LW. Open LED Illuminator: A Simple and Inexpensive LED Illuminator for Fast Multicolor Particle Tracking in Neurons. Anderson KI, editor. PLoS One. 2015;10: e0143547. doi: 10.1371/journal.pone.0143547 26600461

29. Jimenez-Valdes RJ, Rodriguez-Moncayo R, Cedillo-Alcantar DF, Garcia-Cordero JL. Massive Parallel Analysis of Single Cells in an Integrated Microfluidic Platform. Anal Chem. 2017;89 : 5210–5220. doi: 10.1021/acs.analchem.6b04485 28406613


Článek vyšel v časopise

PLOS One


2019 Číslo 10
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

BONE ACADEMY 2025
nový kurz
Autoři: prof. MUDr. Pavel Horák, CSc., doc. MUDr. Ludmila Brunerová, Ph.D, doc. MUDr. Václav Vyskočil, Ph.D., prim. MUDr. Richard Pikner, Ph.D., MUDr. Olga Růžičková, MUDr. Jan Rosa, prof. MUDr. Vladimír Palička, CSc., Dr.h.c.

Cesta pacienta nejen s SMA do nervosvalového centra
Autoři: MUDr. Jana Junkerová, MUDr. Lenka Juříková

Svět praktické medicíny 2/2025 (znalostní test z časopisu)

Eozinofilní zánět a remodelace
Autoři: MUDr. Lucie Heribanová

Hypertrofická kardiomyopatie: Moderní přístupy v diagnostice a léčbě
Autoři: doc. MUDr. David Zemánek, Ph.D., MUDr. Anna Chaloupka, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#