#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Facile assembly of an affordable miniature multicolor fluorescence microscope made of 3D-printed parts enables detection of single cells


Autoři: Samuel B. Tristan-Landin aff001;  Alan M. Gonzalez-Suarez aff001;  Rocio J. Jimenez-Valdes aff001;  Jose L. Garcia-Cordero aff001
Působiště autorů: Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del IPN, Parque PIIT, Apodaca, Nuevo León, Mexico aff001
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0215114

Souhrn

Fluorescence microscopy is one of the workhorses of biomedical research and laboratory diagnosis; however, their cost, size, maintenance, and fragility has prevented their adoption in developing countries or low-resource settings. Although significant advances have decreased their size, cost and accessibility, their designs and assembly remain rather complex. Here, inspired on the simple mechanism from a nut and a bolt, we report the construction of a portable fluorescence microscope that operates in bright-field mode and in three fluorescence channels: UV, green, and red. It is assembled in under 10 min from only six 3D printed parts, basic electronic components, a microcomputer (Raspberry Pi) and a camera, all of which can be readily purchased in most locations or online for US $122. The microcomputer was programmed in Python language to capture time-lapse images and videos. Resolution and illumination conditions of the microscope were characterized, and its performance was compared with a high-end fluorescence microscope in bright-field and fluorescence mode. We demonstrate that our miniature microscope can resolve and track single cells in both modes. The instructions on how to assemble the microscope are shown in a video, and the software to control it and the design files of the 3D-printed parts are freely available online. Our portable microscope is ideal in applications where space is at a premium, such as lab-on-a-chips or space missions, and can find applications in basic and clinical research, diagnostics, telemedicine and in educational settings.

Klíčová slova:

3D printing – Bright field imaging – Fluorescence imaging – Fluorescence microscopy – Microfluidics – Optical lenses – Bright field microscopy – Video microscopy


Zdroje

1. Agard DA, Hiraoka Y, Shaw P, Sedat JW. Chapter 13 Fluorescence Microscopy in Three Dimensions. Methods in Cell Biology. 1989. pp. 353–377. doi: 10.1016/s0091-679x(08)60986-3 2494418

2. Wessels JT, Pliquett U, Wouters FS. Light-emitting diodes in modern microscopy-from David to Goliath? Cytom Part A. 2012;81A: 188–197. doi: 10.1002/cyto.a.22023 22290727

3. Breslauer DN, Maamari RN, Switz NA, Lam WA, Fletcher DA. Mobile Phone Based Clinical Microscopy for Global Health Applications. Pai M, editor. PLoS One. 2009;4: e6320. doi: 10.1371/journal.pone.0006320 19623251

4. Miller AR, Davis GL, Oden ZM, Razavi MR, Fateh A, Ghazanfari M, et al. Portable, Battery-Operated, Low-Cost, Bright Field and Fluorescence Microscope. Doherty TM, editor. PLoS One. 2010;5: e11890. doi: 10.1371/journal.pone.0011890 20694194

5. Schaefer S, Boehm SA, Chau KJ. Automated, portable, low-cost bright-field and fluorescence microscope with autofocus and autoscanning capabilities. Appl Opt. 2012;51: 2581. doi: 10.1364/AO.51.002581 22614477

6. Jin D, Wong D, Li J, Luo Z, Guo Y, Liu B, et al. Compact Wireless Microscope for In-Situ Time Course Study of Large Scale Cell Dynamics within an Incubator. Sci Rep. 2015;5: 18483. doi: 10.1038/srep18483 26681552

7. Coloma J, Harris E. Innovative low cost technologies for biomedical research and diagnosis in developing countries. BMJ. 2004;329: 1160–1162. doi: 10.1136/bmj.329.7475.1160 15539673

8. Sulkin MS, Widder E, Shao C, Holzem KM, Gloschat C, Gutbrod SR, et al. Three-dimensional printing physiology laboratory technology. Am J Physiol Circ Physiol. 2013;305: H1569–H1573. doi: 10.1152/ajpheart.00599.2013 24043254

9. Bishop GW, Satterwhite-Warden JE, Kadimisetty K, Rusling JF. 3D-printed bioanalytical devices. Nanotechnology. 2016;27: 284002. doi: 10.1088/0957-4484/27/28/284002 27250897

10. Symes MD, Kitson PJ, Yan J, Richmond CJ, Cooper GJT, Bowman RW, et al. Integrated 3D-printed reactionware for chemical synthesis and analysis. Nat Chem. 2012;4: 349–354. doi: 10.1038/nchem.1313 22522253

11. Hernández Vera R, Schwan E, Fatsis-Kavalopoulos N, Kreuger J. A Modular and Affordable Time-Lapse Imaging and Incubation System Based on 3D-Printed Parts, a Smartphone, and Off-The-Shelf Electronics. Doh J, editor. PLoS One. 2016;11: e0167583. doi: 10.1371/journal.pone.0167583 28002463

12. Wei Q, Qi H, Luo W, Tseng D, Ki SJ, Wan Z, et al. Fluorescent Imaging of Single Nanoparticles and Viruses on a Smart Phone. ACS Nano. 2013;7: 9147–9155. doi: 10.1021/nn4037706 24016065

13. Zhu H, Yaglidere O, Su T-W, Tseng D, Ozcan A. Cost-effective and compact wide-field fluorescent imaging on a cell-phone. Lab Chip. 2011;11: 315–322. doi: 10.1039/c0lc00358a 21063582

14. Cressey D. The DIY electronics transforming research. Nature. 2017;544: 125–126. doi: 10.1038/544125a 28383014

15. Wang Z, Boddeda A, Parker B, Samanipour R, Ghosh S, Menard F, et al. A High-Resolution Minimicroscope System for Wireless Real-Time Monitoring. IEEE Trans Biomed Eng. 2018;65: 1524–1531. doi: 10.1109/TBME.2017.2749040 28880156

16. Zhang YS, Ribas J, Nadhman A, Aleman J, Selimović Š, Lesher-Perez SC, et al. A cost-effective fluorescence mini-microscope for biomedical applications. Lab Chip. 2015;15: 3661–3669. doi: 10.1039/c5lc00666j 26282117

17. Maia Chagas A, Prieto-Godino LL, Arrenberg AB, Baden T. The €100 lab: A 3D-printable open-source platform for fluorescence microscopy, optogenetics, and accurate temperature control during behaviour of zebrafish, Drosophila, and Caenorhabditis elegans. PLOS Biol. 2017;15: e2002702. doi: 10.1371/journal.pbio.2002702 28719603

18. Sharkey JP, Foo DCW, Kabla A, Baumberg JJ, Bowman RW. A one-piece 3D printed flexure translation stage for open-source microscopy. Rev Sci Instrum. 2016;87: 025104. doi: 10.1063/1.4941068 26931888

19. Cybulski JS, Clements J, Prakash M. Foldscope: Origami-Based Paper Microscope. Martens L, editor. PLoS One. 2014;9: e98781. doi: 10.1371/journal.pone.0098781 24940755

20. Gonzalez-Suarez AM, Peña-del Castillo JG, Hernández-Cruz A, Garcia-Cordero JL. Dynamic Generation of Concentration- and Temporal-Dependent Chemical Signals in an Integrated Microfluidic Device for Single-Cell Analysis. Anal Chem. 2018;90: 8331–8336. doi: 10.1021/acs.analchem.8b02442 29916698

21. Nuñez I, Matute T, Herrera R, Keymer J, Marzullo T, Rudge T, et al. Low cost and open source multi-fluorescence imaging system for teaching and research in biology and bioengineering. Gilestro GF, editor. PLoS One. 2017;12: e0187163. doi: 10.1371/journal.pone.0187163 29140977

22. Switz NA, D’Ambrosio M V., Fletcher DA. Low-Cost Mobile Phone Microscopy with a Reversed Mobile Phone Camera Lens. Pai M, editor. PLoS One. 2014;9: e95330. doi: 10.1371/journal.pone.0095330 24854188

23. Kim SB, Koo K, Bae H, Dokmeci MR, Hamilton G a, Bahinski A, et al. A mini-microscope for in situ monitoring of cells. Lab Chip. 2012;12: 3976–82. doi: 10.1039/c2lc40345e 22911426

24. Jewett JW., Serway RA. Image Formation. Physics for Scientists and Engineers with Modern Physics. 7th ed. Cengage Learning EMEA; 2008. pp. 1008–1050.

25. DeRose JA, Doppler M. Guidelines for Understanding Magnification in the Modern Digital Microscope Era. Micros Today. 2018;26: 20–33. doi: 10.1017/S1551929518000688

26. Peli E. Contrast in complex images. J Opt Soc Am A. 1990;7: 2032. doi: 10.1364/JOSAA.7.002032 2231113

27. Taylor DL. Chapter 13 Basic Fluorescence Microscopy. Methods in Cell Biology. 1988. pp. 207–237. doi: 10.1016/S0091-679X(08)60196-X

28. Bosse JB, Tanneti NS, Hogue IB, Enquist LW. Open LED Illuminator: A Simple and Inexpensive LED Illuminator for Fast Multicolor Particle Tracking in Neurons. Anderson KI, editor. PLoS One. 2015;10: e0143547. doi: 10.1371/journal.pone.0143547 26600461

29. Jimenez-Valdes RJ, Rodriguez-Moncayo R, Cedillo-Alcantar DF, Garcia-Cordero JL. Massive Parallel Analysis of Single Cells in an Integrated Microfluidic Platform. Anal Chem. 2017;89: 5210–5220. doi: 10.1021/acs.analchem.6b04485 28406613


Článek vyšel v časopise

PLOS One


2019 Číslo 10
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

KOST
Koncepce osteologické péče pro gynekology a praktické lékaře
nový kurz
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Svět praktické medicíny 5/2023 (znalostní test z časopisu)

Imunopatologie? … a co my s tím???
Autoři: doc. MUDr. Helena Lahoda Brodská, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#