Heads or tails? Differential translational regulation in cercarial heads and tails of schistosome worms

Autoři: James R. Hagerty aff001;  Emmitt R. Jolly aff001
Působiště autorů: Case Western Reserve University, Department of Biology, Cleveland, OH, United States of America aff001;  Case Western Reserve University, Center for Global Health and Disease, Cleveland, OH, United States of America aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224358


Schistosomes are obligate helminths responsible for over 218 million cases of human schistosomiasis in 78 countries around the world. Infection occurs when free-swimming cercariae penetrate human skin and initiate developmental progression into parasitic obligate worms that consume red blood cells. Transcriptomic studies of infectious cercariae reveal abundant mRNAs associated with energy metabolism and host invasion. However, the cercaria is mostly transcriptionally quiescent, suggesting that most mRNAs are primed prior to cercarial escape from the snail host. The use of transcriptomics to understand protein expression presumes that transcription and translation are functionally coupled and the cercarial stage has categorically been treated as a single unit for -omic analysis. Per contra, the relationship between transcription and translation in infectious cercariae has not been described. To understand the correlation between transcription and translation in cercariae, we separately measured nascent translation levels in cercarial heads, cercarial tails and in the developing schistosomula, the next stage of its life cycle. The loss of the cercarial tail is essential for the transformation from a cercaria to a schistosomulum. We observed that translation was initially limited and the translation rate accelerated during the first 72-hours after tail loss. When we tested nascent translation in cercarial heads, cercarial tails, whole cercariae, and 4-hour schistosomula, we found that translation is significantly upregulated in the cercarial tail when compared to the cercarial head and that translation was undetectable in heads using immunofluorescent image quantification (p = .0005). These data represent a major shift in how we understand the cercarial stage. The cercarial head is mostly transcriptionally and translationally quiescent while being sufficient for progression into a schistosomulum. In addition, transcription and translation are not linked in Schistosoma mansoni cercaria. Thus, our current conceptual approach of treating the cercaria as a single functional unit for -omic studies may be insufficient to understand cercarial development.

Klíčová slova:

DNA transcription – Propidium iodide staining – Protein translation – Schistosoma – Swimming – Tails – Cercarias – Nick translation


1. Stirewalt MA. Schistosoma mansoni: cercaria to schistosomule. Advances in parasitology. 1974;12:115–82. 4141581

2. Cousin CE, Stirewalt MA, Dorsey CH. Schistosoma mansoni: transformation of cercariae to schistosomules in ELAC, saline and phosphate-buffered saline. J Parasitol. 1986;72(4):609–11. 3783357

3. Jones MK, Gobert GN, Zhang L, Sunderland P, McManus DP. The cytoskeleton and motor proteins of human schistosomes and their roles in surface maintenance and host-parasite interactions. BioEssays: news and reviews in molecular, cellular and developmental biology. 2004;26(7):752–65.

4. Parker-Manuel SJ, Ivens AC, Dillon GP, Wilson RA. Gene expression patterns in larval Schistosoma mansoni associated with infection of the mammalian host. PLoS Negl Trop Dis. 2011;5(8):e1274. doi: 10.1371/journal.pntd.0001274 21912711

5. Roquis D, Lepesant JM, Picard MA, Freitag M, Parrinello H, Groth M, et al. The Epigenome of Schistosoma mansoni Provides Insight about How Cercariae Poise Transcription until Infection. PLoS Negl Trop Dis. 2015;9(8):e0003853. doi: 10.1371/journal.pntd.0003853 26305466

6. Liang S, Varrecchia M, Ishida K, Jolly ER. Evaluation of schistosome promoter expression for transgenesis and genetic analysis. PloS one. 2014;9(5):e98302. doi: 10.1371/journal.pone.0098302 24858918

7. Blanton RE, Licate LS. Developmental regulation of protein synthesis in schistosomes. Mol Biochem Parasitol. 1992;51(2):201–8. doi: 10.1016/0166-6851(92)90070-z 1374160

8. Azzam ME, Algranati ID. Mechanism of puromycin action: fate of ribosomes after release of nascent protein chains from polysomes. Proc Natl Acad Sci U S A. 1973;70(12):3866–9. doi: 10.1073/pnas.70.12.3866 4590173

9. Milligan JN, Jolly ER. Cercarial transformation and in vitro cultivation of Schistosoma mansoni schistosomules. J Vis Exp. 2011(54).

10. Lazdins JK, Stein MJ, David JR, Sher A. Schistosoma mansoni: rapid isolation and purification of schistosomula of different developmental stages by centrifugation on discontinuous density gradients of Percoll. Exp Parasitol. 1982;53(1):39–44. doi: 10.1016/0014-4894(82)90090-x 6276213

11. Gobert GN, Moertel L, Brindley PJ, McManus DP. Developmental gene expression profiles of the human pathogen Schistosoma japonicum. BMC Genomics. 2009;10:128. doi: 10.1186/1471-2164-10-128 19320991

12. Asch HL, Dresden MH. Schistosoma mansoni: effects of zinc on cercarial and schistosomule viability. J Parasitol. 1977;63(1):80–6. 845744

13. Blanton R, Loula EC, Parker J. Two heat-induced proteins are associated with transformation of Schistosoma mansoni cercariae to schistosomula. Proc Natl Acad Sci U S A. 1987;84(24):9011–4. doi: 10.1073/pnas.84.24.9011 3321064

14. Walker E, Chappell LH. Schistosoma-Mansoni—Comparison of the Effects of Cycloheximide and Emetine on Protein-Synthesis in Adult Worms. Comp Biochem Phys C. 1980;67(2):129–34.

15. Peak E, Chalmers IW, Hoffmann KF. Development and validation of a quantitative, high-throughput, fluorescent-based bioassay to detect schistosoma viability. PLoS Negl Trop Dis. 2010;4(7):e759. doi: 10.1371/journal.pntd.0000759 20668553

16. Ishida K, Jolly ER. Hsp70 May Be a Molecular Regulator of Schistosome Host Invasion. PLoS Negl Trop Dis. 2016;10(9):e0004986. doi: 10.1371/journal.pntd.0004986 27611863

17. Liang S, Knight M, Jolly E. Polyethyleneimine Mediated DNA Transfection in Schistosome parasites and regulation of the WNT signaling pathway by a Dominant-Negative SmMef2 PLoS Negl Trop Dis. 2013;in press.

18. Collins JJ 3rd, King RS, Cogswell A, Williams DL, Newmark PA. An atlas for Schistosoma mansoni organs and life-cycle stages using cell type-specific markers and confocal microscopy. PLoS Negl Trop Dis. 2011;5(3):e1009. doi: 10.1371/journal.pntd.0001009 21408085

19. Ishida K, Varrecchia M, Knudsen GM, Jolly ER. Immunolocalization of anti-hsf1 to the acetabular glands of infectious schistosomes suggests a non-transcriptional function for this transcriptional activator. PLoS Negl Trop Dis. 2014;8(7):e3051. doi: 10.1371/journal.pntd.0003051 25078989

20. Jolly ER, Chin CS, Miller S, Bahgat MM, Lim KC, DeRisi J, et al. Gene expression patterns during adaptation of a helminth parasite to different environmental niches. Genome Biol. 2007;8(4):R65. doi: 10.1186/gb-2007-8-4-r65 17456242

21. Goodman CA, Hornberger TA. Measuring protein synthesis with SUnSET: a valid alternative to traditional techniques? Exerc Sport Sci Rev. 2013;41(2):107–15. doi: 10.1097/JES.0b013e3182798a95 23089927

22. Schmidt EK, Clavarino G, Ceppi M, Pierre P. SUnSET, a nonradioactive method to monitor protein synthesis. Nat Methods. 2009;6(4):275–7. doi: 10.1038/nmeth.1314 19305406

23. Aviner R, Geiger T, Elroy-Stein O. Genome-wide identification and quantification of protein synthesis in cultured cells and whole tissues by puromycin-associated nascent chain proteomics (PUNCH-P). Nature protocols. 2014;9(4):751–60. doi: 10.1038/nprot.2014.051 24603934

24. David A, Dolan BP, Hickman HD, Knowlton JJ, Clavarino G, Pierre P, et al. Nuclear translation visualized by ribosome-bound nascent chain puromycylation. The Journal of cell biology. 2012;197(1):45–57. doi: 10.1083/jcb.201112145 22472439

25. Nagai Y, Gazzinelli G, de Moraes GW, Pellegrino J. Protein synthesis during cercaria-schistosomulum transformation and early development of the Schistosoma mansoni larvae. Comp Biochem Physiol B. 1977;57(1):27–30. doi: 10.1016/0305-0491(77)90077-3 299624

26. Abdulla MH, Ruelas DS, Wolff B, Snedecor J, Lim KC, Xu F, et al. Drug discovery for schistosomiasis: hit and lead compounds identified in a library of known drugs by medium-throughput phenotypic screening. PLoS Negl Trop Dis. 2009;3(7):e478. doi: 10.1371/journal.pntd.0000478 19597541

27. Solis GM, Kardakaris R, Valentine ER, Bar-Peled L, Chen AL, Blewett MM, et al. Translation attenuation by minocycline enhances longevity and proteostasis in old post-stress-responsive organisms. eLife. 2018;7.

28. Halliday M, Radford H, Zents KAM, Molloy C, Moreno JA, Verity NC, et al. Repurposed drugs targeting eIF2α-P-mediated translational repression prevent neurodegeneration in mice. Brain. 2017;140(6):1768–83. doi: 10.1093/brain/awx074 28430857

29. Aviner R, Geiger T, Elroy-Stein O. Novel proteomic approach (PUNCH-P) reveals cell cycle-specific fluctuations in mRNA translation. Genes Dev. 2013;27(16):1834–44. doi: 10.1101/gad.219105.113 23934657

30. Cai P, Hou N, Piao X, Liu S, Liu H, Yang F, et al. Profiles of small non-coding RNAs in Schistosoma japonicum during development. PLoS Negl Trop Dis. 2011;5(8):e1256. doi: 10.1371/journal.pntd.0001256 21829742

31. Cai PF, Liu S, Piao XY, Hou N, You H, McManus DP, et al. A next-generation microarray further reveals stage-enriched gene expression pattern in the blood fluke Schistosoma japonicum. Parasites & vectors. 2017;10.

32. Verjovski-Almeida S, DeMarco R, Martins EA, Guimaraes PE, Ojopi EP, Paquola AC, et al. Transcriptome analysis of the acoelomate human parasite Schistosoma mansoni. Nat Genet. 2003;35(2):148–57. doi: 10.1038/ng1237 12973350

33. Williams DL, Sayed AA, Bernier J, Birkeland SR, Cipriano MJ, Papa AR, et al. Profiling Schistosoma mansoni development using serial analysis of gene expression (SAGE). Exp Parasitol. 2007;117(3):246–58. doi: 10.1016/j.exppara.2007.05.001 17577588

34. Cai P, Liu S, Piao X, Hou N, You H, McManus DP, et al. A next-generation microarray further reveals stage-enriched gene expression pattern in the blood fluke Schistosoma japonicum. Parasites & vectors. 2017;10(1):19.

35. Protasio AV, Tsai IJ, Babbage A, Nichol S, Hunt M, Aslett MA, et al. A systematically improved high quality genome and transcriptome of the human blood fluke Schistosoma mansoni. PLoS Negl Trop Dis. 2012;6(1):e1455. doi: 10.1371/journal.pntd.0001455 22253936

36. Wiest PM, Tartakoff AM, Aikawa M, Mahmoud AA. Inhibition of surface membrane maturation in schistosomula of Schistosoma mansoni. Proc Natl Acad Sci U S A. 1988;85(11):3825–9. doi: 10.1073/pnas.85.11.3825 3375243

37. Hu Z, Xia B, Postnikoff SD, Shen ZJ, Tomoiaga AS, Harkness TA, et al. Ssd1 and Gcn2 suppress global translation efficiency in replicatively aged yeast while their activation extends lifespan. eLife. 2018;7.

38. Wieser W, Krumschnabel G. Hierarchies of ATP-consuming processes: direct compared with indirect measurements, and comparative aspects. Biochem J. 2001;355(Pt 2):389–95. doi: 10.1042/0264-6021:3550389 11284726

39. Shenton D, Smirnova JB, Selley JN, Carroll K, Hubbard SJ, Pavitt GD, et al. Global translational responses to oxidative stress impact upon multiple levels of protein synthesis. J Biol Chem. 2006;281(39):29011–21. doi: 10.1074/jbc.M601545200 16849329

40. Fried B, Laterra R, Kim Y. Effects of exogenous glucose on survival and infectivity of Schistosoma mansoni cercariae. Korean J Parasitol. 2002;40(1):55–8. doi: 10.3347/kjp.2002.40.1.55 11954549

41. Cousin CE, Stirewalt MA, Dorsey CH. Schistosoma mansoni: ultrastructure of early transformation of skin- and shear-pressure-derived schistosomules. Exp Parasitol. 1981;51(3):341–65. doi: 10.1016/0014-4894(81)90122-3 7227486

42. Protasio AV, Dunne DW, Berriman M. Comparative study of transcriptome profiles of mechanical- and skin-transformed Schistosoma mansoni schistosomula. PLoS Negl Trop Dis. 2013;7(3):e2091. doi: 10.1371/journal.pntd.0002091 23516644

43. Fishelson Z, Amiri P, Friend DS, Marikovsky M, Petitt M, Newport G, et al. Schistosoma mansoni: cell-specific expression and secretion of a serine protease during development of cercariae. Exp Parasitol. 1992;75(1):87–98. doi: 10.1016/0014-4894(92)90124-s 1639166

44. McKerrow JH, Salter J. Invasion of skin by Schistosoma cercariae. Trends Parasitol. 2002;18(5):193–5. 11983589

45. Stirewalt MA, Austin BE. Collection of secreted protease from the preacetabular glands of cercariae of Schistosoma mansoni. J Parasitol. 1973;59(4):741–3. 4722597

46. de Haro C, Mendez R, Santoyo J. The eIF-2alpha kinases and the control of protein synthesis. FASEB J. 1996;10(12):1378–87. doi: 10.1096/fasebj.10.12.8903508 8903508

47. Hoeffer CA, Cowansage KK, Arnold EC, Banko JL, Moerke NJ, Rodriguez R, et al. Inhibition of the interactions between eukaryotic initiation factors 4E and 4G impairs long-term associative memory consolidation but not reconsolidation. Proc Natl Acad Sci U S A. 2011;108(8):3383–8. doi: 10.1073/pnas.1013063108 21289279

48. Sanchez CG, Teixeira FK, Czech B, Preall JB, Zamparini AL, Seifert JR, et al. Regulation of Ribosome Biogenesis and Protein Synthesis Controls Germline Stem Cell Differentiation. Cell stem cell. 2016;18(2):276–90. doi: 10.1016/j.stem.2015.11.004 26669894

49. Sadikoglou E, Daoutsali E, Petridou E, Grigoriou M, Skavdis G. Comparative analysis of internal ribosomal entry sites as molecular tools for bicistronic expression. J Biotechnol. 2014;181:31–4. doi: 10.1016/j.jbiotec.2014.03.033 24709397

50. Tolbert M, Morgan CE, Pollum M, Crespo-Hernandez CE, Li ML, Brewer G, et al. HnRNP A1 Alters the Structure of a Conserved Enterovirus IRES Domain to Stimulate Viral Translation. Journal of molecular biology. 2017;429(19):2841–58. doi: 10.1016/j.jmb.2017.06.007 28625847

51. Cheng G, Jin Y. MicroRNAs: potentially important regulators for schistosome development and therapeutic targets against schistosomiasis. Parasitology. 2012;139(5):669–79. doi: 10.1017/S0031182011001855 22309492

52. Zhu L, Liu J, Cheng G. Role of microRNAs in schistosomes and schistosomiasis. Frontiers in cellular and infection microbiology. 2014;4:165. doi: 10.3389/fcimb.2014.00165 25426450

53. Stroehlein AJ, Young ND, Korhonen PK, Hall RS, Jex AR, Webster BL, et al. The small RNA complement of adult Schistosoma haematobium. PLoS Negl Trop Dis. 2018;12(5):e0006535. doi: 10.1371/journal.pntd.0006535 29813122

54. de Souza Gomes M, Muniyappa MK, Carvalho SG, Guerra-Sa R, Spillane C. Genome-wide identification of novel microRNAs and their target genes in the human parasite Schistosoma mansoni. Genomics. 2011;98(2):96–111. doi: 10.1016/j.ygeno.2011.05.007 21640815

55. Simoes MC, Lee J, Djikeng A, Cerqueira GC, Zerlotini A, da Silva-Pereira RA, et al. Identification of Schistosoma mansoni microRNAs. BMC Genomics. 2011;12:47. doi: 10.1186/1471-2164-12-47 21247453

56. Oliveira VF, Moares LAG, Mota EA, Jannotti-Passos LK, Coelho PMZ, Mattos ACA, et al. Identification of 170 New Long Noncoding RNAs in Schistosoma mansoni. BioMed research international. 2018;2018:1264697. doi: 10.1155/2018/1264697 30112357

57. Yoon JH, Abdelmohsen K, Gorospe M. Posttranscriptional gene regulation by long noncoding RNA. Journal of molecular biology. 2013;425(19):3723–30. doi: 10.1016/j.jmb.2012.11.024 23178169

58. Gu S, Kay MA. How do miRNAs mediate translational repression? Silence. 2010;1(1):11. doi: 10.1186/1758-907X-1-11 20459656

59. Freimer JW, Hu TJ, Blelloch R. Decoupling the impact of microRNAs on translational repression versus RNA degradation in embryonic stem cells. eLife. 2018;7.

60. Wei YN, Hu HY, Xie GC, Fu N, Ning ZB, Zeng R, et al. Transcript and protein expression decoupling reveals RNA binding proteins and miRNAs as potential modulators of human aging. Genome Biol. 2015;16:41. doi: 10.1186/s13059-015-0608-2 25853883

61. Crabtree JE, Wilson RA. Schistosoma mansoni: a scanning electron microscope study of the developing schistosomulum. Parasitology. 1980;81(Pt 3):553–64. doi: 10.1017/s003118200006193x 7232034

Článek vyšel v časopise


2019 Číslo 10