#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A rapid, low pH, nutrient stress, assay to determine the bactericidal activity of compounds against non-replicating Mycobacterium tuberculosis


Autoři: Julie V. Early aff001;  Steven Mullen aff001;  Tanya Parish aff001
Působiště autorů: TB Discovery Research, Infectious Disease Research Institute, Seattle, Washington, United States of America aff001
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222970

Souhrn

There is an urgent need for new anti-tubercular agents which can lead to a shortened treatment time by targeting persistent or non-replicating bacilli. In order to assess compound activity against non-replicating Mycobacterium tuberculosis, we developed a method to detect the bactericidal activity of novel compounds within 7 days. Our method uses incubation at low pH in order to induce a non-replicating state. We used a strain of M. tuberculosis expressing luciferase; we first confirmed the linear relationship between luminescence and viable bacteria (determined by colony forming units) under our assay conditions. We optimized the assay parameters in 96-well plates in order to achieve a reproducible assay. Our final assay used M. tuberculosis in phosphate-citrate buffer, pH 4.5 exposed to compounds for 7 days; viable bacteria were determined by luminescence. We recorded the minimum bactericidal concentration at pH 4.5 (MBC4.5) representing >2 logs of kill. We confirmed the utility of the assay with control compounds. The ionophores monensin, niclosamide, and carbonyl cyanide 3-chlorophenylhydrazone and the anti-tubercular drugs pretomanid and rifampicin were active, while several other drugs such as isoniazid, ethambutol, and linezolid were not.

Klíčová slova:

Antibiotics – Fluorescence – Luciferase – Luminescence – Oxygen – Ionophores – Outgrowth assay


Zdroje

1. WHO. Global Tuberculosis Report 2018 2018. Available from: http://www.who.int/tb/publications/global_report/en/.

2. WHO. Guidelines for treatment of tuberculosis 2010. Available from: http://www.who.int/tb/publications/2010/9789241547833/en/.

3. Gordon SV, Parish T. Microbe Profile: Mycobacterium tuberculosis: Humanity's deadly microbial foe. Microbiology (Reading, England). 2018;164(4):437–9. Epub 2018/02/22. doi: 10.1099/mic.0.000601 29465344.

4. Gomez JE, McKinney JD. M. tuberculosis persistence, latency, and drug tolerance. Tuberculosis (Edinb). 2004;84(1–2):29–44. 14670344.

5. McDermott W, Tompsett R. Activation of pyrazinamide and nicotinamide in acidic environments in vitro. American review of tuberculosis. 1954;70(4):748–54. 13197751.

6. Wayne LG, Hayes LG. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun. 1996;64(6):2062–9. 8675308; PubMed Central PMCID: PMC174037.

7. Cho SH, Warit S, Wan B, Hwang CH, Pauli GF, Franzblau SG. Low-oxygen-recovery assay for high-throughput screening of compounds against nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2007;51(4):1380–5. doi: 10.1128/AAC.00055-06 17210775; PubMed Central PMCID: PMC1855511.

8. Gold B, Warrier T, Nathan C. A multi-stress model for high throughput screening against non-replicating Mycobacterium tuberculosis. Methods in molecular biology (Clifton, NJ). 2015;1285 : 293–315. Epub 2015/03/18. doi: 10.1007/978-1-4939-2450-9_18 25779324.

9. Deb C, Lee CM, Dubey VS, Daniel J, Abomoelak B, Sirakova TD, et al. A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. PLoS One. 2009;4(6):e6077. doi: 10.1371/journal.pone.0006077 19562030; PubMed Central PMCID: PMC2698117.

10. Zhang M, Sala C, Hartkoorn RC, Dhar N, Mendoza-Losana A, Cole ST. Streptomycin-starved Mycobacterium tuberculosis 18b, a drug discovery tool for latent tuberculosis. Antimicrob Agents Chemother. 2012;56(11):5782–9. doi: 10.1128/AAC.01125-12 22926567; PubMed Central PMCID: PMC3486556.

11. Grant SS, Kawate T, Nag PP, Silvis MR, Gordon K, Stanley SA, et al. Identification of novel inhibitors of nonreplicating Mycobacterium tuberculosis using a carbon starvation model. ACS Chem Biol. 2013;8(10):2224–34. doi: 10.1021/cb4004817 23898841; PubMed Central PMCID: PMC3864639.

12. Andreu N, Fletcher T, Krishnan N, Wiles S, Robertson BD. Rapid measurement of antituberculosis drug activity in vitro and in macrophages using bioluminescence. The Journal of antimicrobial chemotherapy. 2012;67(2):404–14. doi: 10.1093/jac/dkr472 22101217; PubMed Central PMCID: PMC3254196.

13. Andreu N, Zelmer A, Fletcher T, Elkington PT, Ward TH, Ripoll J, et al. Optimisation of bioluminescent reporters for use with mycobacteria. PLoS One. 2010;5(5):e10777. doi: 10.1371/journal.pone.0010777 20520722; PubMed Central PMCID: PMC2875389.

14. Zhang JH, Chung TD, Oldenburg KR. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. Journal of biomolecular screening. 1999;4(2):67–73. doi: 10.1177/108705719900400206 10838414.

15. Yates RM, Hermetter A, Taylor GA, Russell DG. Macrophage activation downregulates the degradative capacity of the phagosome. Traffic. 2007;8(3):241–50. doi: 10.1111/j.1600-0854.2006.00528.x 17319801.

16. Early J, Alling T. Determination of compound kill kinetics against Mycobacterium tuberculosis. Methods in molecular biology (Clifton, NJ). 2015;1285 : 269–79. doi: 10.1007/978-1-4939-2450-9_16 25779322.

17. Early J, Ollinger J, Darby C, Alling T, Mullen S, Casey A, et al. Identification of Compounds with pH-Dependent Bactericidal Activity against Mycobacterium tuberculosis. ACS infectious diseases. 2019;5(2):272–80. Epub 2018/12/07. doi: 10.1021/acsinfecdis.8b00256 30501173; PubMed Central PMCID: PMC6371205.

18. Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Molecular Microbiology. 2002;43(3):717–31. doi: 10.1046/j.1365-2958.2002.02779.x 11929527

19. Carroll P, Muwanguzi-Karugaba J, Parish T. Codon-optimized DsRed fluorescent protein for use in Mycobacterium tuberculosis. BMC research notes. 2018;11(1):685. Epub 2018/10/05. doi: 10.1186/s13104-018-3798-3 30285840; PubMed Central PMCID: PMC6167837.

20. Iversen PW, Beck B, Chen YF, Dere W, Devanarayan V, Eastwood BJ, et al. HTS Assay Validation. In: Sittampalam GS, Coussens NP, Brimacombe K, Grossman A, Arkin M, Auld D, et al., editors. Assay Guidance Manual. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2004.

21. Stover CK, Warrener P, VanDevanter DR, Sherman DR, Arain TM, Langhorne MH, et al. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature. 2000;405(6789):962–6. Epub 2000/07/06. doi: 10.1038/35016103 10879539.

22. Iacobino A, Piccaro G, Giannoni F, Mustazzolu A, Fattorini L. Fighting tuberculosis by drugs targeting nonreplicating Mycobacterium tuberculosis bacilli. Int J Mycobacteriol. 2017;6(3):213–21. doi: 10.4103/ijmy.ijmy_85_17_85_17 28776518.

23. Salfinger M, Heifets LB. Determination of pyrazinamide MICs for Mycobacterium tuberculosis at different pHs by the radiometric method. Antimicrobial agents and chemotherapy. 1988;32(7):1002–4. doi: 10.1128/aac.32.7.1002 3142340.

24. Piccaro G, Poce G, Biava M, Giannoni F, Fattorini L. Activity of lipophilic and hydrophilic drugs against dormant and replicating Mycobacterium tuberculosis. J Antibiot (Tokyo). 2015;68(11):711–4. doi: 10.1038/ja.2015.52 25944535.

25. (CLSI) CaLSI. Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline. Wayne, Pennsylvania: Clinical and Laboratory Standards Institute; 1999.


Článek vyšel v časopise

PLOS One


2019 Číslo 10
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Čelistně-ortodontické kazuistiky od A do Z
nový kurz
Autoři: MDDr. Eleonóra Ivančová, PhD., MHA

Mepolizumab v reálné klinické praxi
Autoři: MUDr. Eva Voláková, Ph.D.

BONE ACADEMY 2025
Autoři: prof. MUDr. Pavel Horák, CSc., doc. MUDr. Ludmila Brunerová, Ph.D., doc. MUDr. Václav Vyskočil, Ph.D., prim. MUDr. Richard Pikner, Ph.D., MUDr. Olga Růžičková, MUDr. Jan Rosa, prof. MUDr. Vladimír Palička, CSc., Dr.h.c.

Cesta pacienta nejen s SMA do nervosvalového centra
Autoři: MUDr. Jana Junkerová, MUDr. Lenka Juříková

Svět praktické medicíny 2/2025 (znalostní test z časopisu)

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#