Agrobacterium tumefaciens-mediated transformation and expression of GFP in Ascochyta lentis to characterize ascochyta blight disease progression in lentil

Autoři: Bernadette M. Henares aff001;  Johannes W. Debler aff001;  Lina M. Farfan-Caceres aff001;  Christina R. Grime aff001;  Robert C. Lee aff001
Působiště autorů: Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia aff001
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article


The plant immune system is made up of a complex response network that involves several lines of defense to fight invading pathogens. Fungal plant pathogens on the other hand, have evolved a range of ways to infect their host. The interaction between Ascochyta lentis and two lentil genotypes was explored to investigate the progression of ascochyta blight (AB) in lentils. In this study, we developed an Agrobacterium tumefaciens-mediated transformation system for A. lentis by constructing a new binary vector, pATMT-GpdGFP, for the constitutive expression of green fluorescent protein (EGFP). Green fluorescence was used as a highly efficient vital marker to study the developmental changes in A. lentis during AB disease progression on the susceptible and resistant lentil accessions, ILL6002 and ILL7537, respectively. The initial infection stages were similar in both the resistant and susceptible accessions where A. lentis uses infection structures such as germ tubes and appressoria to gain entry into the host while the host uses defense mechanisms to prevent pathogen entry. Penetration was observed at the junctions between neighbouring epidermal cells and occasionally, through the stomata. The pathogen attempted to penetrate and colonize ILL7537, but further fungal advancement appeared to be halted, and A. lentis did not enter the mesophyll. Successful entry and colonization of ILL6002 coincided with structural changes in A. lentis and the onset of necrotic lesions 5–7 days post inoculation. Once inside the leaf, A. lentis continued to grow, colonizing all parts of the leaf followed by plant cell collapse. Pycnidia-bearing spores appeared 14 days post inoculation, which marks the completion of the infection cycle. The use of fluorescent proteins in plant pathogenic fungi together with confocal laser scanning microscopy, provide a valuable tool to study the intracellular dynamics, colonization strategy and infection mechanisms during plant-pathogen interaction.

Klíčová slova:

Confocal laser microscopy – Fluorescence microscopy – Fungal pathogens – Fungal structure – Leaves – Mesophyll – Plant fungal pathogens – Plant pathogens


1. Yadav SS, McNeil DL, Stevenson PC. Lentil: An ancient crop for modern times. Springer Netherlands; 2007. doi: 10.1007/978-1-4020-6313-8

2. FAOSTAT. Food and Agriculture Organization of the United Nations, Statistics Division [Internet]. 2016. Available:

3. RD&E lifts lentil profile. GRDC GroundCover. 2016. Available:

4. Kaiser WJ, Wang B-C, Rogers JD. Ascochyta fabae and A. lentis: Host Specificity, Teleomorphs (Didymella), Hybrid Analysis, and Taxonomic Status. Plant Dis. 2007;81: 809–816. doi: 10.1094/pdis.1997.81.7.809 30861899

5. Taylor P, Lindbeck K, Chen W, Ford R. Lentil Diseases. Lentil: An ancient crop for modern times. Dordrecht: Springer Netherlands; 2007. pp. 291–313. doi: 10.1007/978-1-4020-6313-8_18

6. Gossen BD, Morrall R. Effect of ascochyta blight on seed yield and quality of lentils. Can J Plant Pathol. 1983;5: 168–173. doi: 10.1080/07060668309501620

7. Murray GM, Brennan JP. The current and potential costs from diseases of oilseed crops in Australia. 2012.

8. Tivoli B, Baranger A, Avila CM, Banniza S, Barbetti M, Chen W, et al. Screening techniques and sources of resistance to foliar diseases caused by major necrotrophic fungi in grain legumes. Euphytica. 2006;147: 223–253.

9. Rodda MS, Davidson J, Javid M, Sudheesh S, Blake S, Forster JW, et al. Molecular Breeding for Ascochyta Blight Resistance in Lentil: Current Progress and Future Directions. Front Plant Sci. 2017;8: 1–11. doi: 10.3389/fpls.2017.00001

10. Dadu RHR, Ford R, Sambasivam P, Street K, Gupta D. Identification of novel Ascochyta lentis resistance in a global lentil collection using a focused identification of germplasm strategy (FIGS). Australas Plant Pathol. 2019;48: 101–113. doi: 10.1007/s13313-018-0603-7

11. Stuthman DD, Leonard KJ, Miller-Garvin J. Breeding crops for durable resistance to disease. Adv Agron. 2007;95: 319–367. doi: 10.1016/S0065-2113(07)95004-X

12. Davidson J, Smetham G, Russ MH, Mcmurray L, Rodda M, Krysinska-Kaczmarek M, et al. Changes in aggressiveness of the Ascochyta lentis population in Southern Australia. Front Plant Sci. 2016;7: 1–16. doi: 10.3389/fpls.2016.00001

13. Roundhill SJ, Fineran BA, Cole ALJ, Ingerfeld M. Structural aspects of ascochyta blight of lentil. Can J Bot. 1995;73: 485–497. doi: 10.1139/b95-049

14. Sambasivam P, Taylor PWJ, Ford R. Pathogenic variation and virulence related responses of Ascochyta lentis on lentil. Eur J Plant Pathol. European Journal of Plant Pathology; 2017; 265–277. doi: 10.1007/s10658-016-0999-2

15. Sari E, Bhadauria V, Vandenberg A, Banniza S, Ford R. Genotype-dependent interaction of lentil lines with Ascochyta lentis. Front Plant Sci. 2017;8: 1–13. doi: 10.3389/fpls.2017.00001

16. Dadu RHR, Ford R, Sambasivam P, Gupta D. Evidence of early defence to Ascochyta lentis within the recently identified Lens orientalis resistance source ILWL180. Plant Pathol. 2018;67: 1492–1501. doi: 10.1111/ppa.12851

17. Sari E, Bhadauria V, Ramsay L, Hossein Borhan M, Lichtenzveig J, Bett KE, et al. Defense responses of lentil (Lens culinaris) genotypes carrying non-allelic ascochyta blight resistance genes to Ascochyta lentis infection. PLoS One. 2018;13: 1–27. doi: 10.1371/journal.pone.0204124 30235263

18. Khorramdelazad M, Bar I, Whatmore P, Smetham G, Bhaaskaria V, Yang Y, et al. Transcriptome profiling of lentil (Lens culinaris) through the first 24 hours of Ascochyta lentis infection reveals key defence response genes. BMC Genomics. BMC Genomics; 2018; 1–21. doi: 10.1186/s12864-017-4368-0

19. Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J. 1997;11: 1187–1194.

20. Sexton AC, Howlett BJ. Green fluorescent protein as a reporter in the Brassica-Leptosphaeria maculans interaction. Physiol Mol Plant Pathol. 2001;58: 13–21. doi: 10.1006/pmpp.2000.0307

21. De Silva AP, Bolton MD, Nelson BD. Transformation of Sclerotinia sclerotiorum with the green fluorescent protein gene and fluorescence of hyphae in four inoculated hosts. Plant Pathol. 2009;58: 487–496. doi: 10.1111/j.1365-3059.2009.02022.x

22. Solomon PS, Wilson TJG, Rybak K, Parker K, Lowe RGT, Oliver RP. Structural characterisation of the interaction between Triticum aestivum and the dothideomycete pathogen Stagonospora nodorum. 2006; 275–282. doi: 10.1007/s10658-005-5768-6

23. Nizam S, Singh K, Verma PK. Expression of the fluorescent proteins DsRed and EGFP to visualize early events of colonization of the chickpea blight fungus Ascochyta rabiei. Curr Genet. 2010;56: 391–399. doi: 10.1007/s00294-010-0305-3 20461519

24. White D, Chen W. Genetic transformation of Ascochyta rabiei using Agrobacterium-mediated transformation. Curr Genet. 2006;49: 272–280. doi: 10.1007/s00294-005-0048-8 16369840

25. Sainsbury F, Thuenemann EC, Lomonossoff GP. PEAQ: Versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnol J. 2009;7: 682–693. doi: 10.1111/j.1467-7652.2009.00434.x 19627561

26. Michielse CB, Hooykaas PJJ, van den Hondel CAMJJ, Ram AFJ. Agrobacterium-mediated transformation of the filamentous fungus Aspergillus awamori. Nat Protoc. 2008;3: 1671–1678. doi: 10.1038/nprot.2008.154 18833205

27. Xin Z, Chen J. A high throughput DNA extraction method with high yield and quality. Plant Methods; 2012;8: 1. doi: 10.1186/1746-4811-8-1

28. Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30: 2114–2120. doi: 10.1093/bioinformatics/btu170 24695404

29. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19: 455–77. doi: 10.1089/cmb.2012.0021 22506599

30. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12: 357–360. doi: 10.1038/nmeth.3317 25751142

31. Schindelin J, Arganda-carreras I, Frise E, Kaynig V, Pietzsch T, Preibisch S, et al. Fiji—an open source platform for biological image analysis. Nat Methods. 2012;9: 676–682. doi: 10.1038/nmeth.2019 22743772

32. Jones K, Kim DW, Park JS, Khang CH. Live-cell fluorescence imaging to investigate the dynamics of plant cell death during infection by the rice blast fungus Magnaporthe oryzae. BMC Plant Biol. BMC Plant Biology; 2016; 1–8. doi: 10.1186/s12870-015-0700-5

33. Geu-Flores F, Nour-Eldin HH, Nielsen MT, Halkier BA. USER fusion: A rapid and efficient method for simultaneous fusion and cloning of multiple PCR products. Nucleic Acids Res. 2007;35: 0–5. doi: 10.1093/nar/gkm106 17389646

34. Auyong ASM, Ford R, Taylor PWJ. Genetic transformation of Colletotrichum truncatum associated with anthracnose disease of chili by random insertional mutagenesis. J Basic Microbiol. 2012;52: 372–382. doi: 10.1002/jobm.201100250 22052577

35. Groot MJA De, Bundock P, Hooykaas PJJ, Beijersbergen AGM. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol. 1998;16: 839–842. doi: 10.1038/nbt0998-839 9743116

36. Idnurm A, Bailey AM, Cairns TC, Elliott CE, Foster GD, Ianiri G, et al. A silver bullet in a golden age of functional genomics: the impact of Agrobacterium-mediated transformation of fungi. Fungal Biol Biotechnol. BioMed Central; 2017;4: 1–28. doi: 10.1186/s40694-017-0035-0 28955474

37. Helber N, Requena N. Expression of the fluorescence markers DsRed and GFP fused to a nuclear localization signal in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol. 2008;177: 537–548. doi: 10.1111/j.1469-8137.2007.02257.x 17995919

38. Wu L, Conner RL, Wang X, Xu R, Li H. Variation in growth, colonization of maize, and metabolic parameters of GFP- and DsRed-labeled Fusarium verticillioides strains. Mycology. 2016;106: 890–899.

39. Michielse CB, van Wijk R, Reijnen L, Cornelissen BJC, Rep M. Insight into the molecular requirements for pathogenicity of Fusarium oxysporum f. sp. lycopersici through large-scale insertional mutagenesis. Genome Biol. 2009;10: 1–18. doi: 10.1186/gb-2009-10-1-r4 19134172

40. Steinberg G. Cell biology of Zymoseptoria tritici: Pathogen cell organization and wheat infection. Fungal Genet Biol. 2015;79: 17–23. doi: 10.1016/j.fgb.2015.04.002 26092785

41. Fones HN, Eyles CJ, Kay W, Cowper J, Gurr SJ. A role for random, humidity-dependent epiphytic growth prior to invasion of wheat by Zymoseptoria tritici. Fungal Genet Biol. 2017;106: 51–60. doi: 10.1016/j.fgb.2017.07.002 28694096

42. Chowdhury J, Henderson M, Schweizer P, Burton RA, Fincher GB, Little A. Differential accumulation of callose, arabinoxylan and cellulose in nonpenetrated versus penetrated papillae on leaves of barley infected with Blumeria graminis f. sp. hordei. New Phytol. 2014;204: 650–660. doi: 10.1111/nph.12974 25138067

43. Stotz HU, Mitrousia GK, de Wit PJGM, Fitt BDL. Effector-triggered defence against apoplastic fungal pathogens. Trends Plant Sci. Elsevier Ltd; 2014;19: 491–500. doi: 10.1016/j.tplants.2014.04.009 24856287

44. Liu G, Kennedy R, Greenshields DL, Peng G, Forseille L, Selvaraj G, et al. Detached and attached Arabidopsis leaf assays reveal distinctive defense responses against hemibiotrophic Colletotrichum spp. Mol Plant-Microbe Interact. 2007;20: 1308–1319. doi: 10.1094/MPMI-20-10-1308 17918632

Článek vyšel v časopise


2019 Číslo 10
Nejčtenější tento týden