Lipoarabinomannan from Mycobacterium indicus pranii shows immunostimulatory activity and induces autophagy in macrophages

Autoři: Bindu Singh aff001;  Mohd Saqib aff001;  Anush Chakraborty aff001;  Sangeeta Bhaskar aff001
Působiště autorů: Product Development Cell-1, National Institute of Immunology, New Delhi, India aff001
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224239


Mycobacterium indicus pranii (MIP) known for its immunotherapeutic potential against leprosy and tuberculosis is undergoing various clinical trials and also simultaneously being studied in animal models to get insight into the mechanistic details contributing to its protective efficacy as a vaccine candidate. Studies have shown potential immunomodulatory properties of MIP, the most significant being the ability to induce strong Th1 type of response, enhanced expression of pro-inflammatory cytokines, activation of APCs and lymphocytes, elicitation of M.tb specific poly-functional T cells. All of these form crucial components of host-immune response during M.tb infection. Also, MIP was found to be potent inducer of autophagy in macrophages which resulted in enhanced clearance of M.tb from MIP and M.tb co-infected cells. Hence, we further examined the component/s of MIP responsible for autophagy induction. Interestingly, we found that MIP lipids and DNA were able to induce autophagy but not the protein fraction. LAM being one of the crucial components of mycobacterial cell-wall lipids and possessing the ability of immunomodulation; we isolated LAM from MIP and did a comparative study with M.tb-LAM. Stimulation with MIP-LAM resulted in significantly high secretion of pro-inflammatory cytokines and displayed high autophagy inducing potential in macrophages as compared to M.tb-LAM. Treatment with MIP-LAM enhanced the co-localization of M.tb within the phago-lysosomes and increased the clearance of M.tb from the infected macrophages. This study describes LAM to be a crucial component of MIP which has significant contribution to its immunotherapeutic efficacy against TB.

Klíčová slova:

Autophagic cell death – Cytokines – Enzyme-linked immunoassays – Lipids – Lysosomes – Macrophages – Mycobacteria – CAT assay


1. Koul A, Herget T, Klebl B, Ullrich A. Interplay between mycobacteria and host signalling pathways. Nat Rev Microbiol. 2004/04/15. 2004;2: 189–202. doi: 10.1038/nrmicro840 [pii] 15083155

2. Welin A, Winberg ME, Abdalla H, Sarndahl E, Rasmusson B, Stendahl O, et al. Incorporation of Mycobacterium tuberculosis Lipoarabinomannan into Macrophage Membrane Rafts Is a Prerequisite for the Phagosomal Maturation Block. Infect Immun. 2008;76: 2882–2887. doi: 10.1128/IAI.01549-07 18426888

3. Flynn JL, Chan J. Immune evasion by Mycobacterium tuberculosis: living with the enemy. Curr Opin Immunol. 2003/08/06. 2003;15: 450–455. doi:S095279150300075X [pii] doi: 10.1016/s0952-7915(03)00075-x 12900278

4. Gupta A, Kaul A, Tsolaki AG, Kishore U, Bhakta S. Mycobacterium tuberculosis: Immune evasion, latency and reactivation. Immunobiology. 2012;217: 363–374. doi: 10.1016/j.imbio.2011.07.008 21813205

5. Behar SM, Martin CJ, Booty MG, Nishimura T, Zhao X, Gan HX, et al. Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis. Mucosal Immunol. 2011/02/11. 2011;4: 279–287. doi: 10.1038/mi.2011.3 [pii]

6. Goletti D, Petruccioli E, Romagnoli A, Piacentini M, Fimia GM. Autophagy in Mycobacterium tuberculosis infection: a passepartout to flush the intruder out? Cytokine Growth Factor Rev. 2013/02/12. 2013;24: 335–343. doi: 10.1016/j.cytogfr.2013.01.002S1359-6101(13)00003-8 [pii] 23395260

7. Janssens S, Beyaert R. Role of Toll-like receptors in pathogen recognition. Clin Microbiol Rev. American Society for Microbiology (ASM); 2003;16: 637–46. doi: 10.1128/CMR.16.4.637-646.2003 14557290

8. Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. American Society for Microbiology (ASM); 2009;22: 240–73, Table of Contents. doi: 10.1128/CMR.00046-08 19366914

9. Levine B, Deretic V. Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol. 2007;7: 767–777. doi: 10.1038/nri2161 17767194

10. Lerner TR, Borel S, Gutierrez MG. The innate immune response in human tuberculosis. Cell Microbiol. Wiley-Blackwell; 2015;17: 1277–85. doi: 10.1111/cmi.12480 26135005

11. Singh B, Saqib M, Gupta A, Kumar P, Bhaskar S. Autophagy induction by Mycobacterium indicus pranii promotes Mycobacterium tuberculosis clearance from RAW 264.7 macrophages. PLoS One. Public Library of Science; 2017;12: e0189606. doi: 10.1371/journal.pone.0189606 29236768

12. Zullo AJ, Lee S. Mycobacterial Induction of Autophagy Varies by Species and Occurs Independently of Mammalian Target of Rapamycin Inhibition. J Biol Chem. 2012;287: 12668–12678. doi: 10.1074/jbc.M111.320135 22275355

13. Hmama Z, Peña-Díaz S, Joseph S, Av-Gay Y. Immunoevasion and immunosuppression of the macrophage by Mycobacterium tuberculosis. Immunol Rev. 2015; doi: 10.1111/imr.12268 25703562

14. Zhai W, Wu F, Zhang Y, Fu Y, Liu Z. Molecular Sciences The Immune Escape Mechanisms of Mycobacterium Tuberculosis. doi: 10.3390/ijms20020340 30650615

15. Deretic V. Autophagy in tuberculosis. Cold Spring Harb Perspect Med. 2014; doi: 10.1101/cshperspect.a018481 25167980

16. Vergne I, Chua J, Singh SB, Deretic V. Cell biology of mycobacterium tuberculosis phagosome. Annu Rev Cell Dev Biol. 2004/10/12. 2004;20: 367–394. doi: 10.1146/annurev.cellbio.20.010403.114015 15473845

17. Hmama Z, Sendide K, Talal A, Garcia R, Dobos K, Reiner NE. Quantitative analysis of phagolysosome fusion in intact cells: inhibition by mycobacterial lipoarabinomannan and rescue by an 1alpha,25-dihydroxyvitamin D3-phosphoinositide 3-kinase pathway. J Cell Sci. 2004;117: 2131–40. doi: 10.1242/jcs.01072 15090599

18. Schlesinger LS, Azad AK, Torrelles JB, Roberts E, Vergne I, Deretic V. Determinants of Phagocytosis, Phagosome Biogenesis and Autophagy for Mycobacterium tuberculosis. Handbook of Tuberculosis. 2017. doi: 10.1002/9783527611614.ch18

19. Kumar P, Marathe S, Bhaskar S. Isolation of Genomic DNA from Mycobacterium Species. BIO-PROTOCOL. 2016;6. doi: 10.21769/BioProtoc.1751

20. Saqib M, Khatri R, Singh B, Gupta A, Bhaskar S. Cell wall fraction of Mycobacterium indicus pranii shows potential Th1 adjuvant activity. Int Immunopharmacol. 2019;70: 408–416. doi: 10.1016/j.intimp.2019.02.049 30856391

21. Shui W, Petzold CJ, Redding A, Liu J, Pitcher A, Sheu L, et al. Organelle Membrane Proteomics Reveals Differential Influence of Mycobacterial Lipoglycans on Macrophage Phagosome Maturation and Autophagosome Accumulation. doi: 10.1021/pr100688h

22. Bah A, Lacarriere C, Vergne I. Autophagy-Related Proteins Target Ubiquitin-Free Mycobacterial Compartment to Promote Killing in Macrophages. Front Cell Infect Microbiol. 2016;6: 53. doi: 10.3389/fcimb.2016.00053 27242971

23. Shin D-M, Yuk J-M, Lee H-M, Lee S-H, Son JW, Harding C V., et al. Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signalling. Cell Microbiol. 2010;12: 1648–1665. doi: 10.1111/j.1462-5822.2010.01497.x 20560977

24. Padhi A, Bhagyaraj E, Khan MZ, Biswas M, Sengupta S, Ganguli G, et al. Mycobacterium tuberculosis LprE enhances bacterial persistence by inhibiting cathelicidin and autophagy in macrophages. bioRxiv. Cold Spring Harbor Laboratory; 2017; 230698. doi: 10.1101/230698

25. Knævelsrud H, Simonsen A. Lipids in autophagy: Constituents, signaling molecules and cargo with relevance to disease. Biochim Biophys Acta—Mol Cell Biol Lipids. Elsevier; 2012;1821: 1133–1145. doi: 10.1016/J.BBALIP.2012.01.001 22269166

26. Dall’Armi C, Devereaux KA, Di Paolo G. The Role of Lipids in the Control of Autophagy. Curr Biol. Cell Press; 2013;23: R33–R45. doi: 10.1016/j.cub.2012.10.041 23305670

27. Maiti D, Bhattacharyya A, Basu J. Lipoarabinomannan from Mycobacterium tuberculosis Promotes Macrophage Survival by Phosphorylating Bad through a Phosphatidylinositol 3-Kinase/Akt Pathway. J Biol Chem. 2001;276: 329–333. doi: 10.1074/jbc.M002650200 11020382

28. Nigou J, Gilleron M, Puzo G. Lipoarabinomannans: from structure to biosynthesis. Biochimie. 85: 153–66. Available: doi: 10.1016/s0300-9084(03)00048-8 12765785

29. Pitarque S, Larrouy-Maumus G, Payré B, Jackson M, Puzo G, Nigou J. The immunomodulatory lipoglycans, lipoarabinomannan and lipomannan, are exposed at the mycobacterial cell surface. Tuberculosis. 2008;88: 560–565. doi: 10.1016/ 18539533

30. Chatterjee D, Khoo K-H. Mycobacterial lipoarabinomannan: An extraordinary lipoheteroglycan with profound physiological effects. Glycobiology. 1998;8: 113–120. doi: 10.1093/glycob/8.2.113 9451020

31. Nigou J, Puzo G, Jackson M, Gilleron M. 6 Structure, Biosynthesis, and Activities of the Phosphatidyl-myo-Inositol-Based Lipoglycans. The Mycobacterial Cell Envelope. American Society of Microbiology; 2008. pp. 75–105. doi: 10.1128/9781555815783.ch6

32. Vergne I, Gilleron M, Nigou J. Manipulation of the endocytic pathway and phagocyte functions by Mycobacterium tuberculosis lipoarabinomannan. Front Cell Infect Microbiol. Frontiers Media SA; 2014;4: 187. doi: 10.3389/fcimb.2014.00187 25629008

33. Harding C V, Henry Boom W. Regulation of antigen presentation by Mycobacterium tuberculosis: a role for Toll-like receptors. 2010; doi: 10.1038/nrmicro2321

34. Strohmeier GR, Fenton MJ. Roles of lipoarabinomannan in the pathogenesis of tuberculosis. Microbes Infect. 1999;1: 709–17. Available: 10611748

35. Adams LB, Fukutomi Y, Krahenbuhl JL. Regulation of murine macrophage effector functions by lipoarabinomannan from mycobacterial strains with different degrees of virulence. Infect Immun. 1993;61: 4173–81. Available: 8406806

36. Dahl KE, Shiratsuchi H, Hamilton BD, Ellner JJ, Toossi Z. Selective induction of transforming growth factor beta in human monocytes by lipoarabinomannan of Mycobacterium tuberculosis. Infect Immun. 1996;64: 399–405. Available: 8550183

37. Barnes PF, Chatterjee D, Abrams JS, Lu S, Wang E, Yamamura M, et al. Cytokine production induced by Mycobacterium tuberculosis lipoarabinomannan. Relationship to chemical structure. J Immunol. 1992;149: 541–7. Available: 1624801

Článek vyšel v časopise


2019 Číslo 10