Identification of muscle-specific candidate genes in Simmental beef cattle using imputed next generation sequencing

Autoři: Farhad Bordbar aff001;  Just Jensen aff002;  Bo Zhu aff001;  Zezhao Wang aff001;  Lei Xu aff001;  Tianpeng Chang aff001;  Ling Xu aff001;  Min Du aff003;  Lupei Zhang aff001;  Huijiang Gao aff001;  Lingyang Xu aff001;  Junya Li aff001
Působiště autorů: Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China aff001;  Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark aff002;  Department of Animal Sciences, Washington Center for Muscle Biology, Washington State University, Pullman, Washington, United States of America aff003
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article


Genome-wide association studies (GWAS) have commonly been used to identify candidate genes that control economically important traits in livestock. Our objective was to detect potential candidate genes associated mainly with muscle development traits related to dimension of hindquarter in cattle. A next generation sequencing (NGS) dataset to imputed to 12 million single nucleotide polymorphisms (SNPs) (from 1252 Simmental beef cattle) were used to search for genes affecting hindquarter traits using a linear, mixed model approach. We also used haplotype and linkage disequilibrium blocks to further support our identifications. We identified 202 significant SNPs in the bovine BTA4 chromosome region associated with width of hind leg, based on a stringent statistical threshold (p = 0.05/ effective number of SNPs identified). After exploring the region around these SNPs, we found candidate genes that were potentially related to the associated markers. More importantly, we identified a region of approximately 280 Kb on the BTA4 chromosome that harbored several muscle specific candidate genes, genes to be in a potential region for muscle development. However, we also found candidate gene SLC13A1 on BTA4, which seems to be associated with bone disorders (such as chondrodysplasia) in Simmental beef cattle.

Klíčová slova:

Cattle – Genome-wide association studies – Legs – Livestock – Meat – Next-generation sequencing – Skeletal muscles – Beef


1. Seré C, Steinfeld H. World livestock production systems. FAO Animal Production and Health Paper 127. 1996;

2. Harris DL. Breeding for Efficiency in Livestock Production: Defining the Economic Objectives. J Anim Sci. 1970; 30(6): 860–865.

3. Yuan Z, Li J, Li J, Gao X, Gao H, Xu S. Effects of DGAT1 gene on meat and carcass fatness quality in Chinese commercial cattle. Mol Biol Rep. 2012; 40(2): 1947–1954. doi: 10.1007/s11033-012-2251-2 23143182

4. Albertí P, Panea B, Sañudo C, Olleta JL, Ripoll G, Ertbjerg P, et al. Live weight, body size and carcass characteristics of young bulls of fifteen European breeds. Livestock Science. 2008; 114: 19–30.

5. Swartz DR, Greaser ML, Cantino ME, Rhoads RP, Rathbone CR, Flann KL, et al. Applied Muscle Biology and Meat Science. In: Du M, McCormick RJ, editors. 1st ed. 2009. 360 p.

6. Tabor HK, Risch NJ, Myers RM. Candidate-gene approaches for studying complex genetic traits: practical considerations. Nat Rev Genet. 2002; 3: 391–397. doi: 10.1038/nrg796 11988764

7. Zhu M, Zhao S. Candidate Gene Identification Approach: Progress and Challenges. Int J Biol Sci. 2007; 3(7): 420–427. doi: 10.7150/ijbs.3.420 17998950

8. Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet. 2005; 6(2): 95–108. doi: 10.1038/nrg1521 15716906

9. Coon KD, Myers AJ, Craig DW, Webster JA, Pearson JV, Lince DH, et al. A high-density whole-genome association study reveals that APOE is the major susceptibility gene for sporadic late-onset Alzheimer’s disease. J Clin Psychiatry. 2007; 68(4): 613–618. doi: 10.4088/jcp.v68n0419 17474819

10. Gudmundsson J, Sulem P, Gudbjartsson DF, Blondal T, Gylfason A, Agnarsson BA, et al. Genome-wide association and replication studies identify four variants associated with prostate cancer susceptibility. Nat Genet. 2009; 41(10): 1122–1126. doi: 10.1038/ng.448 19767754

11. Goddard ME, Hayes BJ. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat Rev Genet. 2009; 10(6): 381–391. doi: 10.1038/nrg2575 19448663

12. Maltecca C, Weigel KA, Khatib H, Cowan M, Bagnato A. Whole-genome scan for quantitative trait loci associated with birth weight, gestation length and passive immune transfer in a Holstein x Jersey crossbred population. Anim Genet. 2009; 40: 27–34. doi: 10.1111/j.1365-2052.2008.01793.x 19016677

13. McClure MC, Morsci NS, Schnabel RD, Kim JW, Yao P, Rolf MM, et al. A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus cattle. Anim Genet. 2010; 41: 597–607. doi: 10.1111/j.1365-2052.2010.02063.x 20477797

14. Cole JB, Wiggans GR, Ma L, Sonstegard TS, Lawlor TJ, Crooker BA, et al. Genome-wide association analysis of thirty one production, health, reproduction and body conformation traits in contemporary U.S. Holstein cows. BMC Genomics. 2011;

15. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 years of GWAS discovery: biology, function, and Translation. Am J Hum Genet. 2017; 101(1): 5–22. doi: 10.1016/j.ajhg.2017.06.005 28686856

16. Reis-Filho JS. Next-generation sequencing. Breast Cancer Res. 2009;

17. Sharma A, Cho Y, Choi BH, Chai HH, Park JE, Lim D. Limited representation of OMIA causative mutations for cattle in SNP databases. Anim Genet. 2017; 48: 369–370. doi: 10.1111/age.12534 28116762

18. Shin DH, Lee HJ, Cho S, Kim HJ, Hwang JY, Lee CK, et al. Deleted copy number variation of Hanwoo and Holstein using next generation sequencing at the population level. BMC Genomics. 2014;

19. Rubin CJ, Megens HJ, Barrio AM, Maqbool K, Sayyab S, Schwochow D, et al. Strong signatures of selection in the domestic pig genome. Proc Nati Acad Sci U S A.2012; 109: 19529–19536.

20. Choi JW, Chung WH, Lee KT, Cho ES, Lee SW, Choi BH, et al. Whole-genome resequencing analyses of five pig breeds, including Korean wild and native, and three European origin breeds. DNA Res. 2015; 22: 259–267. doi: 10.1093/dnares/dsv011 26117497

21. McClure MC, Morsci NS, Schnabel RD, Kim JW, Yao P, Rolf MM, et al. A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus cattle. Anim Genet. 2010; 41(6): 597–607. doi: 10.1111/j.1365-2052.2010.02063.x 20477797

22. Nishimura S, Watanabe T, Mizoshita K, Tatsuda K, Fujita T, Watanabe N, et al. Genome-wide association study identified three major QTL for carcass weight including the PLAG1-CHCHD7 QTN for stature in Japanese Black cattle. BMC Genet. 2012;

23. Setoguchi K, Furuta M, Hirano T, Nagao T, Watanabe T, Sugimoto Y, et al. Cross-breed comparisons identified a critical 591-kb region for bovine carcass weight QTL (CW-2) on chromosome 6 and the Ile-442-Met substitution in NCAPG as a positional candidate. BMC Genet. 2009;

24. Takasuga A, Watanabe T, Mizoguchi Y, Hirano T, Ihara N, Takano A, et al. Identification of bovine QTL for growth and carcass traits in Japanese Black cattle by replication and identical-by-descent mapping. Mamm Genome. 2017; 18(2): 125–136.

25. Lindholm-Perry AK, Sexten AK, Kuehn LA, Smith TP, King DA, Shackelford SD, et al. Association, effects and validation of polymorphisms within the NCAPG—LCORL locus located on BTA 6 with feed intake, gain, meat and carcass traits in beef cattle. BMC Genet. 2011;

26. Riggs PK, Owens KE, Rexroad CE, AmaraL MEJ, Womack JE. Development and initial characterization of a Bos taurus x B. Gaurus interspecific hybrid backcross panel. J Hered. 1997; 88: 373–379. doi: 10.1093/oxfordjournals.jhered.a023121 9378912

27. Threadgill DS, Threadgill DW, Moll YD, Weiss JA, Zhang N, Davey HW, et al. Syntenic assignment of human chromosome 1 homologous loci in the bovine. Genomics. 1994; 22: 626–630. doi: 10.1006/geno.1994.1436 8001974

28. Bishop MD, Kappes SM, Keele JW, Stone RT, Sunden SL, Hawkins GA, et al. A genetic linkage map for cattle. Genetics. 1994; 36: 619–639.

29. Charlier C, Coppieters W, Farnir F, Grobet L, Leroy PL, Michaux C, et al. The MH gene causing double-muscling in cattle maps to bovine chromosome 2. Mamm Genome. 1995; 6(11): 788–792. doi: 10.1007/bf00539005 8597635

30. Beever JE, Fisher SR, Guérin G, Lewin HA. Mapping of eight human chromosome 1 orthologs to cattle chromosomes 3 and 16. Mamm Genome. 1997; 8(7): 533–536. doi: 10.1007/s003359900493 9196004

31. Smith TP, Casas E, Rexroad CE 3rd, Kappes SM, Keele JW. Bovine CAPN1 maps to a region of BTA29 containing a quantitative trait locus for meat tenderness. J Anim Sci. 2000; 78(10): 2589–2594. doi: 10.2527/2000.78102589x 11048924

32. Cheong HS, Yoon DH, Park BL, Kim LH, Bae JS, Namgoong S, et al. A single nucleotide polymorphism in CAPN1 associated with marbling score in Korean cattle. BMC Genet. 2008;

33. Piedrafita J, Quintanilla R, Sanudo C, Olleta JL, Campo MM, Panea B, et al. Carcass quality of 10 beef cattle breeds of the Southwest of Europe in their typical production systems. Livest Prod Sci. 2003; 82(1): 1–13.

34. Booth FW, Kelso JR. Effect of hind-limb immobilization on contractile and histochemical properties of skeletal muscle. Pflugers Archiv. 1973; 342(3): 231–238. doi: 10.1007/bf00591371 4270552

35. Oddy VH, Herd RM, McDonagh MB, Woodgate R, Quinn CA, Zirkler K. Effect of divergent selection for yearling growth rate on protein metabolism in hind-limb muscle and whole body of Angus cattle. Livest Prod Sci. 1998; 56(3): 225–231.

36. Allen DL, Linderman JK, Roy RR, Bigbee AJ, Grindeland RE, Mukku V, et al. Apoptosis: a mechanism contributing to remodeling of skeletal muscle in response to hindlimb unweighting. Am J Physiol. 1997;

37. Boisclair YR, Bauman DE, Bell AW, Dunshea FR, Harkins M. Nutrient utilization and protein turnover in the hindlimb of cattle treated with bovine somatotropin. J Nutr. 1994; 124(5): 664–673. doi: 10.1093/jn/124.5.664 8169658

38. Dutra F, Carlsten J, Ekman S. Hind limb skeletal lesions in 12-month-old bulls of beef breeds. Zentralbl Veterinarmed A. 1999; 46(8): 489–508. doi: 10.1046/j.1439-0442.1999.00241.x 10596288

39. McDonagh MB, Fernandez C, Oddy VH. Hind-limb protein metabolism and calpain system activity influence post-mortem change in meat quality in lamb. Meat Sci. 1999; 52(1): 9–18. doi: 10.1016/s0309-1740(98)00143-0 22062138

40. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007; 81(3): 559–575. doi: 10.1086/519795 17701901

41. Fujimoto A, Nakagawa H, Hosono N, Nakano K, Abe T, Boroevich KA, et al. Whole genome sequencing and comprehensive variant analysis of a Japanese individual using massively parallel sequencing. Nature Genet. 2010; 42: 931–936. doi: 10.1038/ng.691 20972442

42. Browning BL, Browning SR. Genotype imputation with millions of reference samples. Am J Hum Genet. 2016; 98: 116–126. doi: 10.1016/j.ajhg.2015.11.020 26748515

43. Fuchsberger C, Abecasis GR, Hinds DA. Minimac2: faster genotype imputation. Bioinformatics. 2014; 31: 782–784. doi: 10.1093/bioinformatics/btu704 25338720

44. Aulchenko YS, Ripke S, Isaacs A, van Duijn CM. GenABEL: An R library for genome-wide association analysis. Bioinformatics. 2007; 23(10): 1294–1296. doi: 10.1093/bioinformatics/btm108 17384015

45. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005; 21: 263–265. doi: 10.1093/bioinformatics/bth457 15297300

46. Li F, Chen B, Xu K, Wu J, Song W, Bancroft I, et al. Genome-wide association study dissects the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L.). DNA Res. 2014; 21(4): 355–367. doi: 10.1093/dnares/dsu002 24510440

47. Bolormaa S, Hayes BJ, Savin K, Hawken R, Barendse W, Arthur PF, et al. Genome-wide association studies for feedlot and growth traits in cattle. J Anim Sci. 2011; 89(6): 1684–1697. doi: 10.2527/jas.2010-3079 21239664

48. Bolormaa S, Pryce JE, Reverter A, Zhang Y, Barendse W, Kemper K, et al. A multi-trait, meta-analysis for detecting pleiotropic polymorphisms for stature, fatness and reproduction in beef cattle. PLoS Genet. 2014;

49. Wu X, Fang M, Liu L, Wang S, Liu J, Ding X, et al. Genome wide association studies for body conformation traits in the Chinese Holstein cattle population. BMC Genomics. 2013;

50. Abo-Ismail MK, Vander Voort G, Squires JJ, Swanson KC, Mandell IB, Liao X, et al. Single nucleotide polymorphisms for feed efficiency and performance in crossbred beef cattle. BMC Genet. 2014;

51. Feugang JM, Kaya A, Page GP, Chen L, Mehta T, Hirani K, et al. Two-stage genome-wide association study identifies integrin beta 5 as having potential role in bull fertility. BMC Genomics. 2009;

52. Duijvesteijn N, Knol EF, Merks JW, Crooijmans RP, Groenen MA, Bovenhuis H, et al. A genome-wide association study on androstenone levels in pigs reveals a cluster of candidate genes on chromosome 6. BMC Genet. 2010;

53. Barendse W, Reverter A, Bunch RJ, Harrison BE, Barris W, Thomas MB. A validated whole-genome association study of efficient food conversion in cattle. Genetics. 2007; 176(3): 1893–1905. doi: 10.1534/genetics.107.072637 17507676

54. Kolbehdari D, Wang Z, Grant JR, Murdoch B, Prasad A, Xiu Z, et al. A whole genome scan to map QTL for milk production traits and somatic cell score in Canadian Holstein bulls. J Ani Breed Genet. 2009; 126(3): 216–227.

55. Settles M, Zanella R, McKay SD, Schnabel RD, Taylor JF, Whitlock R, et al. A Whole Genome Association analysis identifies loci associated with Mycobacterium avium subsp. paratuberculosis infection status in US Holstein Cattle. Anim Genet. 2009; 40(5): 655–662. doi: 10.1111/j.1365-2052.2009.01896.x 19422364

56. Liu Y, Li J, Zhang F, Qin W, Yao G, He X, et al. Molecular cloning and characterization of the human ASB-8 gene encoding a novel member of ankyrin repeat and SOCS box containing protein family. Biochem Biophys Res Commun. 2003; 300(4): 972–979. doi: 10.1016/s0006-291x(02)02971-6 12559969

57. Hancock DL, Wagner J, and Anderson D. Effects of estrogens and androgens on animal growth. In: Pearson A, Dutson T, editors. Advances in Meat Research. vol 7. Essex, UK: Elsevier Science; 1991. p. 255.

58. Kohroki J, Fujita S, Itoh N, Yamada Y, Imai H, Yumoto N, et al. ATRA-regulated ASB-2 gene induced in differentiation of HL-60 leukemia cells. FEBS Lett. 2001; 505(2): 223–228. doi: 10.1016/s0014-5793(01)02829-0 11566180

59. McDaneld TG, Hancock DL, Moody DE. Altered mRNA abundance of ASB15 and four other genes in skeletal muscle following administration of β-adrenergic receptor agonists. Physiol Genomics. 2004; 16(2): 275–283. doi: 10.1152/physiolgenomics.00127.2003 14645738

60. McDaneld TG, Hannon K, Moody DE. Ankyrin repeat and SOCS box protein 15 regulates protein synthesis in skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2006; 290(6): R1672–R1682. doi: 10.1152/ajpregu.00239.2005 16424087

61. McDaneld TG, Spurlock DM. Ankyrin repeat and suppressor of cytokine signaling (SOCS) box-containing protein (ASB) 15 alters differentiation of mouse C2C12 myoblasts and phosphorylation of mitogen-activated protein kinase and Akt1. J Anim Sci. 2008; 86(11): 2897–2902. doi: 10.2527/jas.2008-1076 18641171

62. Ackrell BA, Maguire JJ, Dallman PR, Kearney EB. Effect of iron deficiency on succinate‐ and NADH‐ubiquinone oxidoreductases in skeletal muscle mitochondria. J Biol Chem. 1984; 259: 10053–10059. 6432778

63. Marui T, Funatogawa I, Koishi S, Yamamoto K, Matsumoto H, Hashimoto O, et al. The NADH‐ubiquinone oxidoreductase 1 alpha subcomplex 5 (NDUFA5) gene variants are associated with autism. Acta Psychiatr Scand. 2011; 123(2): 118–124. doi: 10.1111/j.1600-0447.2010.01600.x 20825370

64. Seong J, Yoon H, Kong HS. Identification of microRNA and target gene associated with marbling score in Korean cattle (Hanwoo). Genes & Genomics. 2016; 38(6): 529–538.

65. Keogh K, Kenny DA, Kelly AK, Cormican P, Waters S. Feed restriction and subsequent re-alimentation affect the expression of oxidative phosphorylation genes in skeletal muscle of Holstein Friesian bulls. 10th World Congress on Genetics Applied to Livestock Production. 2014.

66. Cenik BK, Garg A, McAnally JR, Shelton JM, Richardson JA, Bassel-Duby R, et al. Severe myopathy in mice lacking the MEF2/SRF-dependent gene leiomodin-3. J Clin Invest. 2015; 125(4): 1569–1578. doi: 10.1172/JCI80115 25774500

67. Chereau D, Boczkowska M, Skwarek-Maruszewska A, Fujiwara I, Hayes DB, Rebowski G, et al. Leiomodin is an actin filament nucleator in muscle cells. Science. 2008; 320(5873): 239–243. doi: 10.1126/science.1155313 18403713

68. Nworu CU, Kraft R, Schnurr DC, Gregorio CC, Krieg PA. Leiomodin 3 and tropomodulin 4 have overlapping functions during skeletal myofibrillogenesis. J Cell Sci. 2015; 128(2): 239–250. doi: 10.1242/jcs.152702 25431137

69. Pappas CT, Mayfield RM, Henderson C, Jamilpour N, Cover C, Hernandez Z, et al. Knockout of LMOD2 results in shorter thin filaments followed by dilated cardiomyopathy and juvenile lethality. Proc Natl Acad Sci U S A. 2015; 112(44): 13573–13578. doi: 10.1073/pnas.1508273112 26487682

70. Yuen M, Sandaradura SA, Dowling JJ, Kostyukova AS, Moroz N, Quinlan KG, et al. Leiomodin-3 dysfunction results in thin filament disorganization and nemaline myopathy. J Clin Invest. 2014; 124(11): 4693–4708. doi: 10.1172/JCI75199 25250574

71. Yu SL, Chung HJ, Sang BC, Park CS, Lee JH, Yoon DH, et al. Identification of differentially expressed genes in distinct skeletal muscles in cattle using cDNA microarray. Anim Biotechnol. 2007; 18(4): 275–285. doi: 10.1080/10495390701413391 17934901

72. Li K, Ma YB, Zhang Z, Tian YH, Xu XL, He YQ, et al. Upregulated IQUB promotes cell proliferation and migration via activating Akt/GSK3β/β-catenin signaling pathway in breast cancer. Cancer Med. 2018; 7(8): 3875–3888. doi: 10.1002/cam4.1568 29968965

73. Pinto CS, Khandekar A, Bhavana R, Kiesel P, Pigino G, Sonawane M. Microridges are apical projections formed of branched F-actin networks that organize the glycan layer. Biorxiv. 2018;

74. Hästbacka J, Superti-Furga A, Wilcox WR, Rimoin DL, Cohn DH, Lander ES. Atelosteogenesis type II is caused by mutations in the diastrophic dysplasia sulfate-transporter gene (DTDST): evidence for a phenotypic series involving three chondrodysplasias. Am J Hum Genet. 1996; 58(2): 255–262. 8571951

75. Meyers SN, McDaneld TG, Swist SL, Marron BM, Steffen DJ, O'Toole D, et al. A deletion mutation in bovine SLC4A2 is associated with osteopetrosis in Red Angus cattle. BMC Genomics. 2010;

76. Zhao X, Onteru SK, Piripi S, Thompson KG, Blair HT, Garrick DJ, et al. In a shake of a lamb’s tail: using genomics to unravel a cause of chondrodysplasia in Texel sheep. Anim Genet. 2012; 1:9–18.

77. Gutekunst CA, Stewart EN, Franz CK, English AW, Gross RE. PlexinA4 Distribution in the Adult Rat Spinal Cord and Dorsal Root Ganglia. J Chem Neuroanat. 2012; 44(1): 1–13. doi: 10.1016/j.jchemneu.2012.03.002 22465808

78. De Winter F, Vo T, Stam FJ, Wisman LA, Bär PR, Niclou SP, et al. The expression of the chemorepellent Semaphorin 3A is selectively induced in terminal Schwann cells of a subset of neuromuscular synapses that display limited anatomical plasticity and enhanced vulnerability in motor neuron disease. Mol Cell Neurosci. 2006; 32(1–2): 102–117. doi: 10.1016/j.mcn.2006.03.002 16677822

79. Hwang H, Bowen BP, Lefort N, Flynn CR, De Filippis EA, Roberts C. Proteomics analysis of human skeletal muscle reveals novel abnormalities in obesity and type 2 diabetes. ADA Journal. 2010; 59(1): 33–42.

80. Darshi M, Mendiola VL, Mackey MR, Murphy AN, Koller A, Perkins GA, et al. ChChd3, an inner mitochondrial membrane protein, is essential for maintaining crista integrity and mitochondrial function. J Biol Chem. 2011; 286(4): 2918–2932. doi: 10.1074/jbc.M110.171975 21081504

81. Fan B, Onteru SK, Du ZQ, Garrick DJ, Stalder KJ, Rothschild MF. Genome-wide association study identifies loci for body composition and structural soundness traits in pigs. PLoS One. 2011;

82. Lee SA, Chan CH, Chen TC, Yang CY, Huang KC, Tsai CH, et al. Protein interactome with sub-network analysis and hub prioritization. BMC Bioinformatics. 2009;

83. Welzenbach J, Neuhoff C, Heidt H, Cinar MU, Looft C, Schellander K, et al. Integrative analysis of metabolomics, proteomic and genomic data to reveal functional pathways and candidate genes for drip loss in pigs. Int J Mol Sci. 2016;

Článek vyšel v časopise


2019 Číslo 10
Nejčtenější tento týden