Extensive culturomics of 8 healthy samples enhances metagenomics efficiency


Autoři: Ami Diakite aff001;  Grégory Dubourg aff001;  Niokhor Dione aff001;  Pamela Afouda aff001;  Sara Bellali aff001;  Issa Isaac Ngom aff001;  Camille Valles aff001;  Matthieu Million aff001;  Anthony Levasseur aff001;  Frédéric Cadoret aff003;  Jean-Christophe Lagier aff001;  Didier Raoult aff001
Působiště autorů: Aix Marseille University, IRD, AP-HM, MEPHI, Marseille, France aff001;  IHU Méditerranée Infection, Marseille, France aff002;  Assistance Publique-Hôpitaux de Marseille, Marseille, France aff003
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223543

Souhrn

Molecular approaches have long led to the assumption that the human gut microbiota is dominated by uncultivable bacteria. The recent advent of large-scale culturing methods, and in particular that of culturomics have demonstrated that these prokaryotes can in fact be cultured. This is increasing in a dramatic manner the repertoire of commensal microbes inhabiting the human gut. Following eight years of culturomics approach applied on more than 900 samples, we propose herein a remake of the pioneering study applying a dual approach including culturomics and metagenomics on a cohort of 8 healthy specimen. Here we show that culturomics enable a 20% higher richness when compared to molecular approaches by culturing 1 archaeal species and 494 bacterial species of which 19 were new taxa. Species discovered as a part of previous culturomics studies represent 30% of the cultivated isolates, while sequences derived from these new taxa enabled to increase by 22% the bacterial richness retrieved by metagenomics. Overall, 67% of the total reads generated were covered by cultured isolates, significantly reducing the hidden content of sequencing methods compared to the pioneering study. By redefining culture conditions to recover microbes previously considered fastidious, there are greater opportunities than ever to eradicate metagenomics dark matter.

Klíčová slova:

Anaerobic bacteria – Bacteria – Matrix-assisted laser desorption ionization time-of-flight mass spectrometry – Metagenomics – Microbiome – New species reports – Sequence databases – Species delimitation


Zdroje

1. Dhakan DB, Maji A, Sharma AK, Saxena R, Pulikkan J, Grace T, et al. The unique composition of Indian gut microbiome, gene catalogue, and associated fecal metabolome deciphered using multi-omics approaches. GigaScience. 2019;8. doi: 10.1093/gigascience/giz004 30698687

2. Sekirov I, Russell SL, Antunes LCM, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90: 859–904. doi: 10.1152/physrev.00045.2009 20664075

3. Rao K, Young VB. Fecal Microbiota Transplantation for the Management of Clostridium difficile Infection. Infect Dis Clin North Am. 2015;29: 109–122. doi: 10.1016/j.idc.2014.11.009 25677705

4. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the Human Intestinal Microbial Flora. Science. 2005;308: 1635–1638. doi: 10.1126/science.1110591 15831718

5. Lagier J-C, Hugon P, Khelaifia S, Fournier P-E, La Scola B, Raoult D. The Rebirth of Culture in Microbiology through the Example of Culturomics To Study Human Gut Microbiota. Clin Microbiol Rev. 2015;28: 237–264. doi: 10.1128/CMR.00014-14 25567229

6. Lagier J-C, Armougom F, Million M, Hugon P, Pagnier I, Robert C, et al. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2012;18: 1185–1193. doi: 10.1111/1469-0691.12023 23033984

7. Dubourg G, Lagier JC, Robert C, Armougom F, Hugon P, Metidji S, et al. Culturomics and pyrosequencing evidence of the reduction in gut microbiota diversity in patients with broad-spectrum antibiotics. Int J Antimicrob Agents. 2014;44: 117–124. doi: 10.1016/j.ijantimicag.2014.04.020 25063078

8. Lagier J-C, Khelaifia S, Alou MT, Ndongo S, Dione N, Hugon P, et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol. 2016;1: 16203. doi: 10.1038/nmicrobiol.2016.203 27819657

9. Bilen M, Dufour J-C, Lagier J-C, Cadoret F, Daoud Z, Dubourg G, et al. The contribution of culturomics to the repertoire of isolated human bacterial and archaeal species. Microbiome. 2018;6: 94. doi: 10.1186/s40168-018-0485-5 29793532

10. Hocquart M, Lagier J-C, Cassir N, Saidani N, Eldin C, Kerbaj J, et al. Early Fecal Microbiota Transplantation Improves Survival in Severe Clostridium difficile Infections. Clin Infect Dis Off Publ Infect Dis Soc Am. 2018;66: 645–650. doi: 10.1093/cid/cix762 29020328

11. Saïdani N, Lagier J-C, Cassir N, Million M, Baron S, Dubourg G, et al. Fecal microbiota transplantation shortens the colonization period and allows the re-entry of patients carrying carbapenamase-producing bacteria into medical care facilities. Int J Antimicrob Agents. 2018; doi: 10.1016/j.ijantimicag.2018.11.014 30472293

12. Seng P, Drancourt M, Gouriet F, La Scola B, Fournier P-E, Rolain JM, et al. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis Off Publ Infect Dis Soc Am. 2009;49: 543–551. doi: 10.1086/600885 19583519

13. Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA, Stares MD, et al. Culturing of “unculturable” human microbiota reveals novel taxa and extensive sporulation. Nature. 2016;533: 543–546. doi: 10.1038/nature17645 27144353

14. Traore SI, Khelaifia S, Armstrong N, Lagier JC, Raoult D. Isolation and culture of Methanobrevibacter smithii by co-culture with hydrogen-producing bacteria on agar plates. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2019; doi: 10.1016/j.cmi.2019.04.008 30986553

15. Morel A-S, Dubourg G, Prudent E, Edouard S, Gouriet F, Casalta J-P, et al. Complementarity between targeted real-time specific PCR and conventional broad-range 16S rDNA PCR in the syndrome-driven diagnosis of infectious diseases. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol. 2015;34: 561–570. doi: 10.1007/s10096-014-2263-z 25348607

16. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol. 2014;64: 346–351. doi: 10.1099/ijs.0.059774-0 24505072

17. Fournier P-E, Lagier J-C, Dubourg G, Raoult D. From culturomics to taxonomogenomics: A need to change the taxonomy of prokaryotes in clinical microbiology. Anaerobe. 2015;36: 73–78. doi: 10.1016/j.anaerobe.2015.10.011 26514403

18. Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD. PANDAseq: paired-end assembler for illumina sequences. BMC Bioinformatics. 2012;13: 31. doi: 10.1186/1471-2105-13-31 22333067

19. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7: 335–336. doi: 10.1038/nmeth.f.303 20383131

20. Stoeck T, Behnke A, Christen R, Amaral-Zettler L, Rodriguez-Mora MJ, Chistoserdov A, et al. Massively parallel tag sequencing reveals the complexity of anaerobic marine protistan communities. BMC Biol. 2009;7: 72. doi: 10.1186/1741-7007-7-72 19886985

21. Mondani L, Piette L, Christen R, Bachar D, Berthomieu C, Chapon V. Microbacterium lemovicicum sp. nov., a bacterium isolated from a natural uranium-rich soil. Int J Syst Evol Microbiol. 2013;63: 2600–2606. doi: 10.1099/ijs.0.048454-0 23264499

22. Boissière A, Tchioffo MT, Bachar D, Abate L, Marie A, Nsango SE, et al. Midgut microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection. PLoS Pathog. 2012;8: e1002742. doi: 10.1371/journal.ppat.1002742 22693451

23. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215: 403–410. doi: 10.1016/S0022-2836(05)80360-2 2231712

24. Mailhe M, Ricaboni D, Vitton V, Gonzalez J-M, Bachar D, Dubourg G, et al. Repertoire of the gut microbiota from stomach to colon using culturomics and next-generation sequencing. BMC Microbiol. 2018;18: 157. doi: 10.1186/s12866-018-1304-7 30355340

25. Dubourg G, Lagier JC, Armougom F, Robert C, Hamad I, Brouqui P, et al. The proof of concept that culturomics can be superior to metagenomics to study atypical stool samples. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol. 2013;32: 1099. doi: 10.1007/s10096-013-1843-7 23430196

26. Emerson JB, Adams RI, Román CMB, Brooks B, Coil DA, Dahlhausen K, et al. Schrödinger’s microbes: Tools for distinguishing the living from the dead in microbial ecosystems. Microbiome. 2017;5: 86. doi: 10.1186/s40168-017-0285-3 28810907

27. Tanaka T, Kawasaki K, Daimon S, Kitagawa W, Yamamoto K, Tamaki H, et al. A hidden pitfall in the preparation of agar media undermines microorganism cultivability. Appl Environ Microbiol. 2014;80: 7659–7666. doi: 10.1128/AEM.02741-14

28. Kato S, Yamagishi A, Daimon S, Kawasaki K, Tamaki H, Kitagawa W, et al. Isolation of Previously Uncultured Slow-Growing Bacteria by Using a Simple Modification in the Preparation of Agar Media. Appl Environ Microbiol. 2018;84. doi: 10.1128/AEM.00807-18 30030229

29. Kurm V, van der Putten WH, Hol WHG. Cultivation-success of rare soil bacteria is not influenced by incubation time and growth medium. PloS One. 2019;14: e0210073. doi: 10.1371/journal.pone.0210073 30629606


Článek vyšel v časopise

PLOS One


2019 Číslo 10