TEM8/ANTXR1-specific CAR T cells mediate toxicity in vivo

Autoři: Kristina Petrovic aff001;  Joseph Robinson aff001;  Katharine Whitworth aff001;  Elizabeth Jinks aff001;  Abeer Shaaban aff002;  Steven P. Lee aff001
Působiště autorů: Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom aff001;  Histopathology Department, Queen Elizabeth Hospital, Birmingham, United Kingdom aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0224015


Engineering T-cells to express receptors specific for antigens present on tumour tissue is proving a highly effective treatment for some leukaemias. However, extending this to solid tumours requires antigens that can be safely and effectively targeted. TEM8, a marker overexpressed on the vasculature of some solid tumours, has been proposed as one such target. A recent report stated that T-cells engineered to express a TEM8-specific chimeric antigen receptor (CAR), when injected into mouse models of triple negative breast cancer, are both safe and effective in controlling tumour growth. Here we report contrasting data with a panel of TEM8-specific CAR-T-cells including one generated from the same antibody used in the other study. We found that the CAR-T-cells demonstrated clear TEM8-specific cytotoxic and cytokine release responses in vitro, but when injected into healthy C57BL6 and NSG mice they rapidly and selectively disappeared from the circulation and in most cases caused rapid toxicity. Infusing CAR-T-cells into a TEM8-knockout mouse indicated that selective loss of cells from the circulation was due to targeting of TEM8 in healthy tissues. Histological analysis of mice treated with a TEM8-specific CAR revealed evidence of inflammation in the lung and spleen with large collections of infiltrating neutrophils. Therefore our data raise concerns over potential on-target off-tumour toxicity with CARs targeting TEM8 and these should be considered carefully before embarking upon clinical trials with such agents.

Klíčová slova:

Basic cancer research – Cell staining – Mouse models – Spleen – T cells – Toxicity – Cancer immunotherapy – T cell receptors


1. Sadelain M, Riviere I, Riddell S. Therapeutic T cell engineering. Nature. 2017;545(7655):423–31. doi: 10.1038/nature22395 28541315; PubMed Central PMCID: PMC5632949.

2. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17. doi: 10.1056/NEJMoa1407222 25317870.

3. Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Science translational medicine. 2014;6(224):224ra25. doi: 10.1126/scitranslmed.3008226 24553386.

4. Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, Stetler-Stevenson M, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol. 2015;33(6):540–9. doi: 10.1200/JCO.2014.56.2025 25154820; PubMed Central PMCID: PMC4322257.

5. Boehm T, Folkman J, Browder T, O'Reilly MS. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature. 1997;390(6658):404–7. doi: 10.1038/37126 9389480.

6. Khong HT, Restifo NP. Natural selection of tumor variants in the generation of "tumor escape" phenotypes. Nat Immunol. 2002;3(11):999–1005. doi: 10.1038/ni1102-999 12407407; PubMed Central PMCID: PMC1508168.

7. St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, et al. Genes expressed in human tumor endothelium. Science. 2000;289(5482):1197–202. Epub 2000/08/19. doi: 10.1126/science.289.5482.1197 10947988.

8. Carson-Walter EB, Watkins DN, Nanda A, Vogelstein B, Kinzler KW, St Croix B. Cell surface tumor endothelial markers are conserved in mice and humans. Cancer Res. 2001;61(18):6649–55. Epub 2001/09/18. 11559528.

9. Chaudhary A, Hilton MB, Seaman S, Haines DC, Stevenson S, Lemotte PK, et al. TEM8/ANTXR1 blockade inhibits pathological angiogenesis and potentiates tumoricidal responses against multiple cancer types. Cancer Cell. 2012;21(2):212–26. Epub 2012/02/22. doi: 10.1016/j.ccr.2012.01.004 22340594; PubMed Central PMCID: PMC3289547.

10. Chaudhary A, St Croix B. Selective blockade of tumor angiogenesis. Cell Cycle. 2012;11(12):2253–9. doi: 10.4161/cc.20374 22617387; PubMed Central PMCID: PMC3383587.

11. Nanda A, Carson-Walter EB, Seaman S, Barber TD, Stampfl J, Singh S, et al. TEM8 interacts with the cleaved C5 domain of collagen alpha 3(VI). Cancer Res. 2004;64(3):817–20. Epub 2004/02/12. 14871805.

12. Werner E, Kowalczyk AP, Faundez V. Anthrax toxin receptor 1/tumor endothelium marker 8 mediates cell spreading by coupling extracellular ligands to the actin cytoskeleton. J Biol Chem. 2006;281(32):23227–36. Epub 2006/06/10. doi: 10.1074/jbc.M603676200 16762926.

13. Bradley KA, Mogridge J, Mourez M, Collier RJ, Young JA. Identification of the cellular receptor for anthrax toxin. Nature. 2001;414(6860):225–9. doi: 10.1038/n35101999 11700562.

14. Fernando S, Fletcher BS. Targeting tumor endothelial marker 8 in the tumor vasculature of colorectal carcinomas in mice. Cancer Res. 2009;69(12):5126–32. Epub 2009/06/17. doi: 10.1158/0008-5472.CAN-09-0725 19528090.

15. Yang MY, Chaudhary A, Seaman S, Dunty J, Stevens J, Elzarrad MK, et al. The cell surface structure of tumor endothelial marker 8 (TEM8) is regulated by the actin cytoskeleton. Biochim Biophys Acta. 2011;1813(1):39–49. doi: 10.1016/j.bbamcr.2010.11.013 21129411; PubMed Central PMCID: PMC3014418.

16. Jinnin M, Medici D, Park L, Limaye N, Liu Y, Boscolo E, et al. Suppressed NFAT-dependent VEGFR1 expression and constitutive VEGFR2 signaling in infantile hemangioma. Nat Med. 2008;14(11):1236–46. doi: 10.1038/nm.1877 18931684; PubMed Central PMCID: PMC2593632.

17. Cullen M, Seaman S, Chaudhary A, Yang MY, Hilton MB, Logsdon D, et al. Host-derived tumor endothelial marker 8 promotes the growth of melanoma. Cancer Res. 2009;69(15):6021–6. Epub 2009/07/23. doi: 10.1158/0008-5472.CAN-09-1086 19622764; PubMed Central PMCID: PMC2721800.

18. Ruan Z, Yang Z, Wang Y, Wang H, Chen Y, Shang X, et al. DNA vaccine against tumor endothelial marker 8 inhibits tumor angiogenesis and growth. J Immunother. 2009;32(5):486–91. Epub 2009/07/18. doi: 10.1097/CJI.0b013e3181a1d134 19609240.

19. Yang X, Zhu H, Hu Z. Dendritic cells transduced with TEM8 recombinant adenovirus prevents hepatocellular carcinoma angiogenesis and inhibits cells growth. Vaccine. 2010;28(43):7130–5. doi: 10.1016/j.vaccine.2010.07.014 20650339.

20. Rouleau C, Menon K, Boutin P, Guyre C, Yoshida H, Kataoka S, et al. The systemic administration of lethal toxin achieves a growth delay of human melanoma and neuroblastoma xenografts: assessment of receptor contribution. Int J Oncol. 2008;32(4):739–48. 18360701.

21. Byrd TT, Fousek K, Pignata A, Szot C, Samaha H, Seaman S, et al. TEM8/ANTXR1-Specific CAR T Cells as a Targeted Therapy for Triple-Negative Breast Cancer. Cancer Res. 2018;78(2):489–500. doi: 10.1158/0008-5472.CAN-16-1911 29183891; PubMed Central PMCID: PMC5771806.

22. Williams LC, Krenciute G, Kalra M, Louis C, Gottschalk S. T cells redirected to TEM8 have antitumor activity but induce "on target/off cancer toxicity" in preclinical models. Journal for Immunotherapy of Cancer. 2016;4((Suppl 1)):51.

23. Kloss CC, Condomines M, Cartellieri M, Bachmann M, Sadelain M. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol. 2013;31(1):71–5. Epub 2012/12/18. doi: 10.1038/nbt.2459 23242161.

24. Roybal KT, Rupp LJ, Morsut L, Walker WJ, McNally KA, Park JS, et al. Precision Tumor Recognition by T Cells With Combinatorial Antigen-Sensing Circuits. Cell. 2016;164(4):770–9. doi: 10.1016/j.cell.2016.01.011 26830879; PubMed Central PMCID: PMC4752902.

25. Beatty GL, O'Hara MH, Lacey SF, Torigian DA, Nazimuddin F, Chen F, et al. Activity of Mesothelin-Specific Chimeric Antigen Receptor T Cells Against Pancreatic Carcinoma Metastases in a Phase 1 Trial. Gastroenterology. 2018;155(1):29–32. doi: 10.1053/j.gastro.2018.03.029 29567081; PubMed Central PMCID: PMC6035088.

26. Di Stasi A, Tey SK, Dotti G, Fujita Y, Kennedy-Nasser A, Martinez C, et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med. 2011;365(18):1673–83. doi: 10.1056/NEJMoa1106152 22047558; PubMed Central PMCID: PMC3236370.

27. Wu CY, Roybal KT, Puchner EM, Onuffer J, Lim WA. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science. 2015;350(6258):aab4077. doi: 10.1126/science.aab4077 26405231; PubMed Central PMCID: PMC4721629.

28. Arcangeli S, Rotiroti MC, Bardelli M, Simonelli L, Magnani CF, Biondi A, et al. Balance of Anti-CD123 Chimeric Antigen Receptor Binding Affinity and Density for the Targeting of Acute Myeloid Leukemia. Mol Ther. 2017;25(8):1933–45. doi: 10.1016/j.ymthe.2017.04.017 28479045; PubMed Central PMCID: PMC5542631.

29. Drent E, Themeli M, Poels R, de Jong-Korlaar R, Yuan H, de Bruijn J, et al. A Rational Strategy for Reducing On-Target Off-Tumor Effects of CD38-Chimeric Antigen Receptors by Affinity Optimization. Mol Ther. 2017;25(8):1946–58. doi: 10.1016/j.ymthe.2017.04.024 28506593; PubMed Central PMCID: PMC5542711.

30. Cheadle EJ, Sheard V, Rothwell DG, Bridgeman JS, Ashton G, Hanson V, et al. Differential role of Th1 and Th2 cytokines in autotoxicity driven by CD19-specific second-generation chimeric antigen receptor T cells in a mouse model. J Immunol. 2014;192(8):3654–65. doi: 10.4049/jimmunol.1302148 24623129.

31. Fehse B, Richters A, Putimtseva-Scharf K, Klump H, Li Z, Ostertag W, et al. CD34 splice variant: an attractive marker for selection of gene-modified cells. Mol Ther. 2000;1(5 Pt 1):448–56. Epub 2000/08/10. doi: 10.1006/mthe.2000.0068S1525-0016(00)90068-6 [pii]. 10933966.

32. Dietz AB, Bulur PA, Emery RL, Winters JL, Epps DE, Zubair AC, et al. A novel source of viable peripheral blood mononuclear cells from leukoreduction system chambers. Transfusion. 2006;46(12):2083–9. Epub 2006/12/21. TRF01033 [pii] doi: 10.1111/j.1537-2995.2006.01033.x 17176319.

33. Tom BH, Rutzky LP, Jakstys MM, Oyasu R, Kaye CI, Kahan BD. Human colonic adenocarcinoma cells. I. Establishment and description of a new line. In Vitro. 1976;12(3):180–91. doi: 10.1007/bf02796440 1262041.

34. Lee SP, Tierney RJ, Thomas WA, Brooks JM, Rickinson AB. Conserved CTL epitopes within EBV latent membrane protein 2—A potential target for CTL-based tumor therapy. Journal of Immunology. 1997;158:3325–34.

Článek vyšel v časopise


2019 Číslo 10
Nejčtenější tento týden