Pyk2-dependent phosphorylation of LSR enhances localization of LSR and tricellulin at tricellular tight junctions

Autoři: Daiki Nakatsu aff001;  Fumi Kano aff001;  Naeko Shinozaki-Narikawa aff001;  Masayuki Murata aff001
Působiště autorů: Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Kanagawa, Japan aff001;  Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223300


Tight junctions (TJs) are cellular junctions within the mammalian epithelial cell sheet that function as a physical barrier to molecular transport within the intercellular space. Dysregulation of TJs leads to various diseases. Tricellular TJs (tTJs), specialized structural variants of TJs, are formed by multiple transmembrane proteins (e.g., lipolysis-stimulated lipoprotein receptor [LSR] and tricellulin) within tricellular contacts in the mammalian epithelial cell sheet. However, the mechanism for recruiting LSR and tricellulin to tTJs is largely unknown. Previous studies have identified that tyrphostin 9, the dual inhibitor of Pyk2 (a nonreceptor tyrosine kinase) and receptor tyrosine kinase platelet-derived growth factor receptor (PDGFR), suppresses LSR and tricellulin recruitment to tTJs in EpH4 (a mouse mammary epithelial cell line) cells. In this study, we investigated the effect of Pyk2 inhibition on LSR and tricellulin localization to tTJs. Pyk2 inactivation by its specific inhibitor or repression by RNAi inhibited the localization of LSR and downstream tricellulin to tTJs without changing their expression level in EpH4 cells. Pyk2-dependent changes in subcellular LSR and tricellulin localization were independent of c-Jun N-terminal kinase (JNK) activation and expression. Additionally, Pyk2-dependent LSR phosphorylation at Tyr-237 was required for LSR and tricellulin localization to tTJs and decreased epithelial barrier function. Our findings indicated a novel mechanism by which Pyk2 regulates tTJ assembly and epithelial barrier function in the mammalian epithelial cell sheet.

Klíčová slova:

Epithelial cells – Immunoblotting – Immunoprecipitation – Phosphorylation – Small interfering RNAs – Transfection – Tyrosine kinases – Tyrosine


1. Amin N, Vincan E. The Wnt signaling pathways and cell adhesion. Front Biosci (Landmark Ed). 2012;1(17):784–804. doi: 10.2741/3957 pmid:22201774

2. Getsios S, Kelsell DP, Forge A. Junctions in human health and inherited disease. Cell Tissue Res. 2015;360(3):435–8. doi: 10.1007/s00441-015-2171-2 25861756

3. Chang B, Svoboda KKH, Liu X. Cell polarization: From epithelial cells to odontoblasts. Eur J Cell Biol. 2019;98(1):1–11. doi: 10.1016/j.ejcb.2018.11.003 30473389

4. Furuse M, Tsukita S. Claudins in occluding junctions of humans and flies. Trends Cell Biol. 2006;16(4):181–8. doi: 10.1016/j.tcb.2006.02.006 16537104

5. Cao X, Surma MA, Simons K. Polarized sorting and trafficking in epithelial cells. Cell Res. 2012;22(5):793–805. doi: 10.1038/cr.2012.64 22525333

6. Sawada N, Murata M, Kikuchi K, Osanai M, Tobioka H, Kojima T, et al. Tight junctions and human diseases. Med Electron Microsc. 2003;36(3):147–56. doi: 10.1007/s00795-003-0219-y 14505058

7. Sawada N. Tight junction-related human diseases. Pathol Int. 2013;63(1):1–12. doi: 10.1111/pin.12021 23356220

8. Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S. Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol. 2005;171(6):939–45. doi: 10.1083/jcb.200510043 16365161

9. Masuda S, Oda Y, Sasaki H, Ikenouchi J, Higashi T, Akashi M, et al. LSR defines cell corners for tricellular tight junction formation in epithelial cells. J Cell Sci. 2011;124(Pt 4):548–55. doi: 10.1242/jcs.072058 21245199

10. Higashi T, Tokuda S, Kitajiri S, Masuda S, Nakamura H, Oda Y, et al. Analysis of the 'angulin' proteins LSR, ILDR1 and ILDR2-tricellulin recruitment, epithelial barrier function and implication in deafness pathogenesis. J Cell Sci. 2013;126(Pt 4):966–77. doi: 10.1242/jcs.116442 23239027

11. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419. doi: 10.1126/science.1260419 25613900

12. Ikenouchi J, Sasaki H, Tsukita S, Furuse M, Tsukita S. Loss of occludin affects tricellular localization of tricellulin. Mol Biol Cell. 2008;19(11):4687–93. doi: 10.1091/mbc.E08-05-0530 18768749

13. Cording J, Berg J, Käding N, Bellmann C, Tscheik C, Westphal JK, et al. In tight junctions, claudins regulate the interactions between occludin, tricellulin and marvelD3, which, inversely, modulate claudin oligomerization. J Cell Sci. 2013;126(Pt 2):554–64. doi: 10.1242/jcs.114306 23203797

14. Kojima T, Fuchimoto J, Yamaguchi H, Ito T, Takasawa A, Ninomiya T, et al. c-Jun N-terminal kinase is largely involved in the regulation of tricellular tight junctions via tricellulin in human pancreatic duct epithelial cells. J Cell Physiol. 2010;225(3):720–33. doi: 10.1002/jcp.22273 20533305

15. Nakatsu D, Kano F, Taguchi Y, Sugawara T, Nishizono T, Nishikawa K, et al. JNK1/2-dependent phosphorylation of angulin-1/LSR is required for the exclusive localization of angulin-1/LSR and tricellulin at tricellular contacts in EpH4 epithelial sheet. Genes Cells. 2014;19(7):565–81. doi: 10.1111/gtc.12158 24889144

16. Samarasekera GDNG Auld VJ. C-terminal Src kinase (Csk) regulates the tricellular junction protein Gliotactin independent of Src. Mol Biol Cell. 2018;29(2):123–136. doi: 10.1091/mbc.E17-04-0251 29167383

17. Matsuda M, Kubo A, Furuse M, Tsukita S. A peculiar internalization of claudins, tight junction-specific adhesion molecules, during the intercellular movement of epithelial cells. J Cell Sci. 2004;117(Pt 7):1247–57. doi: 10.1242/jcs.00972 14996944

18. Itoh M, Yonemura S, Nagafuchi A, Tsukita S, Tsukita S. A 220-kD undercoat-constitutive protein: its specific localization at cadherin-based cell-cell adhesion sites. J Cell Biol. 1991;115(5):1449–62. doi: 10.1083/jcb.115.5.1449 1955485

19. Nakatsu D, Horiuchi Y, Kano F, Noguchi Y, Sugawara T, Takamoto I, et al. L-cysteine reversibly inhibits glucose-induced biphasic insulin secretion and ATP production by inactivating PKM2. Proc Natl Acad Sci U S A. 2015;112(10):E1067–76. doi: 10.1073/pnas.1417197112 25713368

20. Naydenov NG, Feygin A, Wang L, Ivanov AI. N-ethylmaleimide-sensitive factor attachment protein α (αSNAP) regulates matrix adhesion and integrin processing in human epithelial cells. J Biol Chem. 2014;289(4):2424–39. doi: 10.1074/jbc.M113.498691 24311785

21. Mills RD, Mita M, Nakagawa J, Shoji M, Sutherland C, Walsh MP. A role for the tyrosine kinase Pyk2 in depolarization-induced contraction of vascular smooth muscle. J Biol Chem. 2015;290(14):8677–92. doi: 10.1074/jbc.M114.633107 25713079

22. Han S, Mistry A, Chang JS, Cunningham D, Griffor M, Bonnette PC, et al. Structural characterization of proline-rich tyrosine kinase 2 (PYK2) reveals a unique (DFG-out) conformation and enables inhibitor design. J Biol Chem. 2009;284(19):13193–201. doi: 10.1074/jbc.M809038200 19244237

23. Schaller MD, Hildebrand JD, Shannon JD, Fox JW, Vines RR, Parsons JT. Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Mol Cell Biol. 1994;14(3):1680–8. doi: 10.1128/mcb.14.3.1680 7509446

24. The CUCKOO Workgroup. Version 3.0 Group-based Prediction System. Available from:

25. Krug SM, Amasheh S, Richter JF, Milatz S, Günzel D, Westphal JK, et al. Tricellulin forms a barrier to macromolecules in tricellular tight junctions without affecting ion permeability. Mol Biol Cell. 2009;20(16):3713–24. doi: 10.1091/mbc.E09-01-0080 19535456

26. Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 2015;43(Database issue):D512–20. doi: 10.1093/nar/gku1267 25514926

27. Dubois F, Vandermoere F, Gernez A, Murphy J, Toth R, Chen S, et al. Differential 14-3-3 affinity capture reveals new downstream targets of phosphatidylinositol 3-kinase signaling. Mol Cell Proteomics. 2009;8(11):2487–99. doi: 10.1074/mcp.M800544-MCP200 19648646

28. Dikic I, Tokiwa G, Lev S, Courtneidge SA, Schlessinger J. A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation. Nature. 1996;383(6600):547–50. doi: 10.1038/383547a0 8849729

29. Chauhan D, Pandey P, Hideshima T, Treon S, Raje N, Davies FE, et al. SHP2 mediates the protective effect of interleukin-6 against dexamethasone-induced apoptosis in multiple myeloma cells. J Biol Chem. 2000;275(36):27845–50. doi: 10.1074/jbc.M003428200 10880513

30. Ganju RK, Brubaker SA, Chernock RD, Avraham S, Groopman JE. Beta-chemokine receptor CCR5 signals through SHP1, SHP2, and Syk. J Biol Chem. 2000;275(23):17263–8. doi: 10.1074/jbc.M000689200 10747947

31. Kumar S, Avraham S, Bharti A, Goyal J, Pandey P, Kharbanda S. Negative regulation of PYK2/related adhesion focal tyrosine kinase signal transduction by hematopoietic tyrosine phosphatase SHPTP1. J Biol Chem. 1999;274(43):30657–63. doi: 10.1074/jbc.274.43.30657 10521452

32. Lyons PD, Dunty JM, Schaefer EM, Schaller MD. Inhibition of the catalytic activity of cell adhesion kinase beta by protein-tyrosine phosphatase-PEST-mediated dephosphorylation. J Biol Chem. 2001;276(26):24422–31. doi: 10.1074/jbc.M011080200 11337490

33. Li S, Sato S, Yang X, Preisig PA, Alpern RJ. Pyk2 activation is integral to acid stimulation of sodium/hydrogen exchanger 3. J Clin Invest. 2004;114(12):1782–9. doi: 10.1172/JCI18046 15599403

34. Ying WZ, Aaron K, Sanders PW. Mechanism of dietary salt-mediated increase in intravascular production of TGF-beta1. Am J Physiol Renal Physiol. 2008;295(2):F406–14. doi: 10.1152/ajprenal.90294.2008 18562633

35. Block ER, Tolino MA, Klarlund JK. Pyk2 activation triggers epidermal growth factor receptor signaling and cell motility after wounding sheets of epithelial cells. J Biol Chem. 2010;285(18):13372–9. doi: 10.1074/jbc.M109.083089 20215112

36. Miller CJ, Muftuoglu Y, Turk BE. A high throughput assay to identify substrate-selective inhibitors of the ERK protein kinases. Biochem Pharmacol. 2017;142:39–45. doi: 10.1016/j.bcp.2017.06.127 28647489

37. Saso W, Tsukuda S, Ohashi H, Fukano K, Morishita R, Matsunaga S, et al. A new strategy to identify hepatitis B virus entry inhibitors by AlphaScreen technology targeting the envelope-receptor interaction. Biochem Biophys Res Commun. 2018;501(2):374–379. doi: 10.1016/j.bbrc.2018.04.187 29730285

38. Nayak G, Lee SI, Yousaf R, Edelmann SE, Trincot C, Van Itallie CM, et al. Tricellulin deficiency affects tight junction architecture and cochlear hair cells. J Clin Invest. 2013;123(9):4036–49. doi: 10.1172/JCI69031 23979167

39. Findley MK, Koval M. Regulation and roles for claudin-family tight junction proteins. IUBMB Life. 2009;61(4):431–7. doi: 10.1002/iub.175 19319969

40. Markov AG, Aschenbach JR, Amasheh S. Claudin clusters as determinants of epithelial barrier function. IUBMB Life. 2015;67(1):29–35. doi: 10.1002/iub.1347 25788154

41. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M. BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 2006;34(Database issue):D535–9. doi: 10.1093/nar/gkj109 16381927

42. Yen FT, Mann CJ, Guermani LM, Hannouche NF, Hubert N, Hornick CA, et al. Identification of a lipolysis-stimulated receptor that is distinct from the LDL receptor and the LDL receptor-related protein. Biochemistry. 1994;33(5):1172–80. doi: 10.1021/bi00171a017 7509190

43. Mann CJ, Khallou J, Chevreuil O, Troussard AA, Guermani LM, Launay K, et al. Mechanism of activation and functional significance of the lipolysis-stimulated receptor. Evidence for a role as chylomicron remnant receptor. Biochemistry. 1995;34(33):10421–31. doi: 10.1021/bi00033a014 7654696

44. Nishitsuji K, Hosono T, Nakamura T, Bu G, Michikawa M. Apolipoprotein E regulates the integrity of tight junctions in an isoform-dependent manner in an in vitro blood-brain barrier model. J Biol Chem. 2011;286(20):17536–42. doi: 10.1074/jbc.M111.225532 21471207

45. Zheng M, Wei J, Tang Y, Yang C, Wei Y, Yin X, et al. ApoE-deficient promotes blood-brain barrier disruption in experimental autoimmune encephalomyelitis via alteration of MMP-9. J Mol Neurosci. 2014;54(2):282–90. doi: 10.1007/s12031-014-0291-x 24788224

46. Jia W, Lu R, Martin TA, Jiang WG. The role of claudin-5 in blood-brain barrier (BBB) and brain metastases (review). Mol Med Rep. 2014;9(3):779–85. doi: 10.3892/mmr.2013.1875 24366267

47. Raleigh DR, Boe DM, Yu D, Weber CR, Marchiando AM, Bradford EM, et al. Occludin S408 phosphorylation regulates tight junction protein interactions and barrier function. J Cell Biol. 2011;193(3):565–82. doi: 10.1083/jcb.201010065 21536752

48. Sonoki H, Sato T, Endo S, Matsunaga T, Yamaguchi M, Yamazaki Y, et al. Quercetin Decreases Claudin-2 Expression Mediated by Up-Regulation of microRNA miR-16 in Lung Adenocarcinoma A549 Cells. Nutrients. 2015;7(6):4578–92. doi: 10.3390/nu7064578 26061016

49. Su Q, Tsai J, Xu E, Qiu W, Bereczki E, Santha M, et al. Apolipoprotein B100 acts as a molecular link between lipid-induced endoplasmic reticulum stress and hepatic insulin resistance. Hepatology. 2009;50(1):77–84. doi: 10.1002/hep.22960 19434737

50. Khan N, Binder L, Pantakani DVK, Asif AR. MPA Modulates Tight Junctions' Permeability via Midkine/PI3K Pathway in Caco-2 Cells: A Possible Mechanism of Leak-Flux Diarrhea in Organ Transplanted Patients. Front Physiol. 2017;26(8):438. doi: 10.3389/fphys.2017.00438 pmid:28694783

Článek vyšel v časopise


2019 Číslo 10