Myomesin is part of an integrity pathway that responds to sarcomere damage and disease

Autoři: Kendal Prill aff001;  Casey Carlisle aff002;  Megan Stannard aff003;  Pamela J. Windsor Reid aff004;  David B. Pilgrim aff003
Působiště autorů: Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada aff001;  Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada aff002;  Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada aff003;  Department of Biological Sciences, MacEwan University, Edmonton, Alberta, Canada aff004
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article


The structure and function of the sarcomere of striated muscle is well studied but the steps of sarcomere assembly and maintenance remain under-characterized. With the aid of chaperones and factors of the protein quality control system, muscle proteins can be folded and assembled into the contractile apparatus of the sarcomere. When sarcomere assembly is incomplete or the sarcomere becomes damaged, suites of chaperones and maintenance factors respond to repair the sarcomere. Here we show evidence of the importance of the M-line proteins, specifically myomesin, in the monitoring of sarcomere assembly and integrity in previously characterized zebrafish muscle mutants. We show that myomesin is one of the last proteins to be incorporated into the assembling sarcomere, and that in skeletal muscle, its incorporation requires connections with both titin and myosin. In diseased zebrafish sarcomeres, myomesin1a shows an early increase of gene expression, hours before chaperones respond to damaged muscle. We found that myomesin expression is also more specific to sarcomere damage than muscle creatine kinase, and our results and others support the use of myomesin assays as an early, specific, method of detecting muscle damage.

Klíčová slova:

Embryos – Muscle contraction – Muscle proteins – Myosins – Skeletal muscles – Structural proteins – Zebrafish


1. Sanger JW, Kang S, Siebrands CC, Freeman N, Du A, Wang J, et al. How to build a myofibril. Journal of Muscle Research and Cell Motility. 2005. pp. 343–354. doi: 10.1007/s10974-005-9016-7 16465476

2. Sanger JW, Wang J, Holloway B, Du A, Sanger JM. Myofibrillogenesis in skeletal muscle cells in zebrafish. Cell Motil Cytoskeleton. 2009;66: 556–566. doi: 10.1002/cm.20365 19382198

3. Sanger JW, Wang J, Fan Y, White J, Sanger JM. Assembly and dynamics of myofibrils. Journal of Biomedicine and Biotechnology. 2010. doi: 10.1155/2010/858606 20625425

4. Rhee D, Sanger JM, Sanger JW. The premyofibril: Evidence for its role in myofibrillogenesis. Cell Motil Cytoskeleton. 1994;28: 1–24. doi: 10.1002/cm.970280102 8044846

5. Sanger JM, Sanger JW. The dynamic Z bands of striated muscle cells. Science Signaling. 2008. doi: 10.1126/scisignal.132pe37 18698076

6. Gautel M, Djinović-Carugo K. The sarcomeric cytoskeleton: From molecules to motion. Journal of Experimental Biology. 2016. doi: 10.1242/jeb.124941 26792323

7. Linke WA, Rudy DE, Centner T, Gautel M, Witt C, Labeit S, et al. I-band titin in cardiac muscle is a three-element molecular spring and is critical for maintaining thin filament structure. J Cell Biol. 1999. doi: 10.1083/jcb.146.3.631 10444071

8. Maruyama K. Connectin/titin, giant elastic protein of muscle. FASEB Journal. 1997.

9. Fukuzawa A, Lange S, Holt M, Vihola A, Carmignac V, Ferreiro A, et al. Interactions with titin and myomesin target obscurin and obscurin-like 1 to the M-band—Implications for hereditary myopathies. J Cell Sci. 2008. doi: 10.1242/jcs.028019 18477606

10. Choi CK, Vicente-Manzanares M, Zareno J, Whitmore LA, Mogilner A, Horwitz AR. Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nat Cell Biol. 2008. doi: 10.1038/ncb1763 19160484

11. Wohlgemuth SL, Crawford BD, Pilgrim DB. The myosin co-chaperone UNC-45 is required for skeletal and cardiac muscle function in zebrafish. Dev Biol. 2007;303: 483–492. doi: 10.1016/j.ydbio.2006.11.027 17189627

12. De Deyne PG. Formation of sarcomeres in developing myotubes: Role of mechanical stretch and contractile activation. Am J Physiol—Cell Physiol. 2000.

13. Stout AL, Wang J, Sanger JM, Sanger JW. Tracking changes in Z-band organization during myofibrillogenesis with FRET imaging. Cell Motil Cytoskeleton. 2008. doi: 10.1002/cm.20265 18330906

14. Wang J, Shaner N, Mittal B, Zhou Q, Chen J, Sanger JM, et al. Dynamics of Z-band based proteins in developing skeletal muscle cells. Cell Motil Cytoskeleton. 2005. doi: 10.1002/cm.20063 15810059

15. JM B CC B, I O, HF E. unc-45 mutations in Caenorhabditis elegans implicate a CRO1/She4p-like domain in myosin assembly. J Cell Biol. 1998.

16. Barral JM, Broadley SA, Schaffar G, Hartl FU. Roles of molecular chaperones in protein misfolding diseases. Seminars in Cell and Developmental Biology. 2004. doi: 10.1016/j.semcdb.2003.12.010 15036203

17. Bernick EP, Zhang PJ, Du S. Knockdown and overexpression of Unc-45b result in defective myofibril organization in skeletal muscles of zebrafish embryos. BMC Cell Biol. 2010;11. doi: 10.1186/1471-2121-11-70 20849610

18. Shao J Du, Li H, Bian Y, Zhong Y. Heat-shock protein 90α1 is required for organized myofibril assembly in skeletal muscles of zebrafish embryos. Proc Natl Acad Sci U S A. 2008. doi: 10.1073/pnas.0707330105 18182494

19. Etard C, Behra M, Fischer N, Hutcheson D, Geisler R, Strähle U. The UCS factor Steif/Unc-45b interacts with the heat shock protein Hsp90a during myofibrillogenesis. Dev Biol. 2007;308: 133–143. doi: 10.1016/j.ydbio.2007.05.014 17586488

20. Geach TJ, Zimmerman LB. Paralysis and delayed Z-disc formation in the Xenopus tropicalis unc45b mutant dicky ticker. BMC Dev Biol. 2010;10. doi: 10.1186/1471-213X-10-75 20637071

21. Just S, Meder B, Berger IM, Etard C, Trano N, Patzel E, et al. The myosin-interacting protein SMYD1 is essential for sarcomere organization. J Cell Sci. 2011;124: 3127–3136. doi: 10.1242/jcs.084772 21852424

22. Prill K, Reid PW, Wohlgemuth SL, Pilgrim DB. Still heart encodes a structural HMT, SMYD1b, with chaperone-like function during fast muscle sarcomere assembly. PLoS One. 2015. doi: 10.1371/journal.pone.0142528 26544721

23. Li H, Zhong Y, Wang Z, Gao J, Xu J, Chu W, et al. Smyd1b is required for skeletal and cardiac muscle function in zebrafish. Mol Biol Cell. 2013;24: 3511–3521. doi: 10.1091/mbc.E13-06-0352 24068325

24. Kirschner J, Bönnemann CG. The Congenital and Limb-Girdle Muscular Dystrophies: Sharpening the Focus, Blurring the Boundaries. Archives of Neurology. 2004. doi: 10.1001/archneur.61.2.189 14967765

25. Salih MAM. A novel form of familial congenital muscular dystrophy in two adolescents. Neuropediatrics. 1998. doi: 10.1055/s-2007-973579 10029346

26. Siegert R, Perrot A, Keller S, Behlke J, Michalewska-Włudarczyk A, Wycisk A, et al. A myomesin mutation associated with hypertrophic cardiomyopathy deteriorates dimerisation properties. Biochem Biophys Res Commun. 2011. doi: 10.1016/j.bbrc.2011.01.056 21256114

27. Abdelilah S, Mountcastle-Shah E, Harvey M, Solnica-Krezel L, Schier AF, Stemple DL, et al. Mutations affecting neural survival in the zebrafish Danio rerio. Development. 1996.

28. Bakkers J. Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovascular Research. 2011. doi: 10.1093/cvr/cvr098 21602174

29. Detrich HW, Westerfield M, Zon LI. Overview of the zebrafish system. Methods in Cell Biology. 1999.

30. CB K, WW B, SR K, B U, TF S. Stages of embryonic development of the zebrafish. Dev Dyn. 1995.

31. Liu J, Stainier DYR. Zebrafish in the study of early cardiac development. Circulation Research. 2012. doi: 10.1161/CIRCRESAHA.111.246504 22427324

32. Agarkova I, Auerbach D, Ehler E, Perriard JC. A novel marker for vertebrate embryonic heart, the EH-myomesin isoform. J Biol Chem. 2000. doi: 10.1074/jbc.275.14.10256 10744711

33. Schoenauer R, Lange S, Hirschy A, Ehler E, Perriard JC, Agarkova I. Myomesin 3, a Novel Structural Component of the M-band in Striated Muscle. J Mol Biol. 2008. doi: 10.1016/j.jmb.2007.11.048 18177667

34. Greaser ML, Guo W, Bharmal SJ, Esbona K. Titin diversityalternative splicing gone wild. Journal of Biomedicine and Biotechnology. 2010. doi: 10.1155/2010/753675 20339475

35. Bertoncini P, Schoenauer R, Agarkova I, Hegner M, Perriard JC, Güntherodt HJ. Study of the mechanical properties of myomesin proteins using dynamic force spectroscopy. J Mol Biol. 2005. doi: 10.1016/j.jmb.2005.03.040 15854649

36. Schoenauer R, Bertoncini P, Machaidze G, Aebi U, Perriard JC, Hegner M, et al. Myomesin is a molecular spring with adaptable elasticity. J Mol Biol. 2005. doi: 10.1016/j.jmb.2005.03.055 15890201

37. Agarkova I, Perriard JC. The M-band: An elastic web that crosslinks thick filaments in the center of the sarcomere. Trends in Cell Biology. 2005. doi: 10.1016/j.tcb.2005.07.001 16061384

38. Benian GM, Mayans O. Titin and obscurin: Giants holding hands and discovery of a new Ig domain subset. Journal of Molecular Biology. 2015. doi: 10.1016/j.jmb.2014.12.017 25555989

39. Lange S, Himmel M, Auerbach D, Agarkova I, Hayess K, Fürst DO, et al. Dimerisation of myomesin: Implications for the structure of the sarcomeric M-band. J Mol Biol. 2005. doi: 10.1016/j.jmb.2004.10.040 15571722

40. Myhre JL, Hills JA, Prill K, Wohlgemuth SL, Pilgrim DB. The titin A-band rod domain is dispensable for initial thick filament assembly in zebrafish. Dev Biol. 2014;387: 93–108. doi: 10.1016/j.ydbio.2013.12.020 24370452

41. Li H, Xu J, Bian YH, Rotllant P, Shen T, Chu W, et al. Smyd1b_tv1, a key regulator of sarcomere assembly, is localized on the M-Line of skeletal muscle fibers. PLoS One. 2011. doi: 10.1371/journal.pone.0028524 22174829

42. Pernigo S, Fukuzawa A, Beedle AEM, Holt M, Round A, Pandini A, et al. Binding of Myomesin to Obscurin-Like-1 at the Muscle M-Band Provides a Strategy for Isoform-Specific Mechanical Protection. Structure. 2017. doi: 10.1016/j.str.2016.11.015 27989621

43. Xu J, Gao J, Li J, Xue L, Clark KJ, Ekker SC, et al. Functional Analysis of Slow Myosin Heavy Chain 1 and Myomesin-3 in Sarcomere Organization in Zebrafish Embryonic Slow Muscles. J Genet Genomics. 2012. doi: 10.1016/j.jgg.2012.01.005 22361506

44. Codina M, Li J, Gutiérrez J, Kao JPY, Du SJ. Loss of Smyhc1 or Hsp90α1 function results in different effects on myofibril organization in skeletal muscles of zebrafish embryos. PLoS One. 2010;5. doi: 10.1371/journal.pone.0008416 20049323

45. Rouillon J, Poupiot J, Zocevic A, Amor F, Léger T, Garcia C, et al. Serum proteomic profiling reveals fragments of MYOM3 as potential biomarkers for monitoring the outcome of therapeutic interventions in muscular dystrophies. Hum Mol Genet. 2015;24: 4916–4932. doi: 10.1093/hmg/ddv214 26060189

46. Westerfield M. The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio), 5th Edition. Univ Oregon Press Eugene. 2007.

47. Granato M, Van Eeden FJM, Schach U, Trowe T, Brand M, Furutani-Seiki M, et al. Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development. 1996;123: 399–413. 9007258

48. Chen JN, Haffter P, Odenthal J, Vogelsang E, Brand M, Van Eeden FJM, et al. Mutations affecting the cardiovascular system and other internal organs in zebrafish. Development. 1996;123: 293–302. 9007249

49. Devoto SH, Melan??on E, Eisen JS, Westerfield M. Identification of separate slow and fast muscle precursor cells in vivo, prior to somite formation. Development. 1996;122: 3371–3380. 8951054

50. Blagden CS, Currie PD, Ingham PW, Hughes SM. Notochord induction of zebrafish slow muscle mediated by sonic hedgehog. Genes Dev. 1997. doi: 10.1101/gad.11.17.2163 9303533

51. Roy S, Wolff C, Ingham PW. The u-boot mutation identifies a Hedgehog-regulated myogenic switch for fiber-type diversification in the zebrafish embryo. Genes Dev. 2001. doi: 10.1101/gad.195801 11410536

52. Sparrow JC, Schöck F. The initial steps of myofibril assembly: Integrins pave the way. Nat Rev Mol Cell Biol. 2009;10: 293–298. doi: 10.1038/nrm2634 19190670

53. Yang J, Hartjes KA, Nelson TJ, Xu X. Cessation of contraction induces cardiomyocyte remodeling during zebrafish cardiogenesis. Am J Physiol—Hear Circ Physiol. 2014. doi: 10.1152/ajpheart.00721.2013 24322613

54. Behra M, Etard C, Cousin X, Strähle U. The use of Zebrafish mutants to identify secondary target effects of acetylcholine esterase inhibitors. Toxicol Sci. 2004. doi: 10.1093/toxsci/kfh020 14657522

55. Sramek JJ, Frackiewicz EJ, Cutler NR. Review of the acetylcholinesterase inhibitor galanthamine. Expert Opin Investig Drugs. 2000. doi: 10.1517/13543784.9.10.2393 11060814

56. Otten C, van der Ven PF, Lewrenz I, Paul S, Steinhagen A, Busch-Nentwich E, et al. Xirp proteins mark injured skeletal muscle in zebrafish. PLoS One. 2012. doi: 10.1371/journal.pone.0031041 22355335

57. Etard C, Armant O, Roostalu U, Gourain V, Ferg M, Strähle U. Loss of function of myosin chaperones triggers Hsf1-mediated transcriptional response in skeletal muscle cells. Genome Biol. 2015. doi: 10.1186/s13059-015-0825-8 26631063

58. Baird MF, Graham SM, Baker JS, Bickerstaff GF. Creatine-kinase- and exercise-related muscle damage implications for muscle performance and recovery. Journal of Nutrition and Metabolism. 2012. doi: 10.1155/2012/960363 22288008

59. Rozanski A, Takano APC, Kato PN, Soares AG, Lellis-Santos C, Campos JC, et al. M-protein is down-regulated in cardiac hypertrophy driven by thyroid hormone in rats. Mol Endocrinol. 2013. doi: 10.1210/me.2013-1018 24176915

60. Schoenauer R, Emmert MY, Felley A, Ehler E, Brokopp C, Weber B, et al. EH-myomesin splice isoform is a novel marker for dilated cardiomyopathy. Basic Res Cardiol. 2011. doi: 10.1007/s00395-010-0131-2 21069531

61. Murphy S, Brinkmeier H, Krautwald M, Henry M, Meleady P, Ohlendieck K. Proteomic profiling of the dystrophin complex and membrane fraction from dystrophic mdx muscle reveals decreases in the cytolinker desmoglein and increases in the extracellular matrix stabilizers biglycan and fibronectin. J Muscle Res Cell Motil. 2017. doi: 10.1007/s10974-017-9478-4 28803268

62. Murphy S, Dowling P, Zweyer M, Henry M, Meleady P, Mundegar RR, et al. Proteomic profiling of mdx-4cv serum reveals highly elevated levels of the inflammation-induced plasma marker haptoglobin in muscular dystrophy. Int J Mol Med. 2017. doi: 10.3892/ijmm.2017.2952 28440464

63. Reddy KB, Fox JEB, Price MG, Kulkarni S, Gupta S, Das B, et al. Nuclear localization of myomesin-1: Possible functions. J Muscle Res Cell Motil. 2008. doi: 10.1007/s10974-008-9137-x 18521710

64. Wang X, Liu X, Wang S, Luan K. Myofibrillogenesis regulator 1 induces hypertrophy by promoting sarcomere organization in neonatal rat cardiomyocytes. Hypertens Res. 2012. doi: 10.1038/hr.2011.228 22418241

65. Shakeel M, Irfan M, Khan IA. Rare genetic mutations in Pakistani patients with dilated cardiomyopathy. Gene. 2018. doi: 10.1016/j.gene.2018.06.019 29886034

66. Lange S, Agarkova I, Perriard JC, Ehler E. The sarcomeric M-band during development and in disease. Journal of Muscle Research and Cell Motility. 2005. doi: 10.1007/s10974-005-9019-4 16470337

67. Lange S, Xiang F, Yakovenko A, Vihola A, Hackman P, Rostkova E, et al. Cell biology: The kinase domain of titin controls muscle gene expression and protein turnover. Science (80-). 2005. doi: 10.1126/science.1110463 15802564

68. Will RD, Eden M, Just S, Hansen A, Eder A, Frank D, et al. Myomasp/LRRC39, a heart- and muscle-specific protein, is a novel component of the sarcomeric m-band and is involved in stretch sensing. Circ Res. 2010. doi: 10.1161/CIRCRESAHA.110.222372 20847312

69. Nelson TJ, Balza R, Xiao Q, Misra RP. SRF-dependent gene expression in isolated cardiomyocytes: Regulation of genes involved in cardiac hypertrophy. J Mol Cell Cardiol. 2005. doi: 10.1016/j.yjmcc.2005.05.004 15950986

70. Detrich HW, Westerfield M, Zon LI. The zebrafish: disease models and chemical screens. Methods Cell Biol. 2011.

71. Li D, Niu Z, Yu W, Qian Y, Wang Q, Li Q, et al. SMYD1, the myogenic activator, is a direct target of serum response factor and myogenin. Nucleic Acids Res. 2009. doi: 10.1093/nar/gkp773 19783823

72. Matsuo M, Awano H, Nishio H. Can urinary titin be used for predicting Duchenne muscular dystrophy? Clinica Chimica Acta. 2019. doi: 10.1016/j.cca.2018.10.045 30395868

73. Awano H, Matsumoto M, Nagai M, Shirakawa T, Maruyama N, Iijima K, et al. Diagnostic and clinical significance of the titin fragment in urine of Duchenne muscular dystrophy patients. Clin Chim Acta. 2018. doi: 10.1016/j.cca.2017.11.024 29175173

74. Matsuo M, Awano H, Maruyama N, Nishio H. Titin fragment in urine: A noninvasive biomarker of muscle degradation. Advances in Clinical Chemistry. 2019. doi: 10.1016/bs.acc.2019.01.001 31122607

75. Awano H, Matsumoto M, Nagai M, Shirakawa T, Maruyama N, Iijima K, et al. Urinary titin reveals persistent proteolysis in Duchenne muscular dystrophy. Neuromuscul Disord. 2017. doi: 10.1016/j.nmd.2017.06.273

Článek vyšel v časopise


2019 Číslo 10
Nejčtenější tento týden