An extinction event in planktonic Foraminifera preceded by stabilizing selection

Autoři: Manuel F. G. Weinkauf aff001;  Fabian G. W. Bonitz aff001;  Rossana Martini aff003;  Michal Kučera aff002
Působiště autorů: Department of Geosciences, Eberhard–Karls Universität Tübingen, Tübingen, Germany aff001;  Center for Marine Environmental Sciences (MARUM), Universität Bremen, Bremen, Germany aff002;  Department of Earth Sciences, Université de Genève, Genève, Switzerland aff003
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223490


Unless they adapt, populations facing persistent stress are threatened by extinction. Theoretically, populations facing stress can react by either disruption (increasing trait variation and potentially generating new traits) or stabilization (decreasing trait variation). In the short term, stabilization is more economical, because it quickly transfers a large part of the population closer to a new ecological optimum. However, stabilization is deleterious in the face of persistently increasing stress, because it reduces variability and thus decreases the ability to react to further changes. Understanding how natural populations react to intensifying stress reaching terminal levels is key to assessing their resilience to environmental change such as that caused by global warming. Because extinctions are hard to predict, observational data on the adaptation of populations facing extinction are rare. Here, we make use of the glacial salinity rise in the Red Sea as a natural experiment allowing us to analyse the reaction of planktonic Foraminifera to stress escalation in the geological past. We analyse morphological trait state and variation in two species across a salinity rise leading to their local extinction. Trilobatus sacculifer reacted by stabilization in shape and size, detectable several thousand years prior to extinction. Orbulina universa reacted by trait divergence, but each of the two divergent populations remained stable or reacted by further stabilization. These observations indicate that the default reaction of the studied Foraminifera is stabilization, and that stress escalation did not lead to the emergence of adapted forms. An inherent inability to breach the global adaptive threshold would explain why communities of Foraminifera and other marine protists reacted to Quaternary climate change by tracking their zonally shifting environments. It also means that populations of marine plankton species adapted to response by migration will be at risk of extinction when exposed to stress outside of the adaptive range.

Klíčová slova:

Morphometry – Phenotypes – Plankton – Red Sea – Salinity – Species diversity – Species extinction – Random walk


1. Moritz C, Agudo R. The future of species under climate change: Resilience or decline? Science. 2013; 341(6145): 504–508. doi: 10.1126/science.1237190 23908228

2. Lens L, Van Dongen S, Kark S, Matthysen E. Fluctuating asymmetry as an indicator of fitness: Can we bridge the gap between studies? Biol Rev Cambridge Philos Soc. 2002; 77: 27–38. doi: 10.1017/S1464793101005796 11911372

3. Hendrickx F, Maelfait JP, Lens L. Relationship between fluctuating asymmetry and fitness within and between stressed and unstressed populations of the wolf spider Pirata piraticus. J Evol Biol. 2003; 16: 1270–1279. doi: 10.1046/j.1420-9101.2003.00633.x 14640418

4. Van Valen L. Morphological variation and width of ecological niche. Am Nat. 1965; 99(908): 377–390.

5. Bull JJ. Evolution of phenotypic variance. Evol: Int J Org Evol. 1987; 41(2): 303–315.

6. Schmalhauzen II. Factors of Evolution: The Theory of Stabilizing Selection. Madison: Blakiston Company; 1949. 327 p.

7. Furlow FB, Armijo-Prewitt T, Gangestad SW, Thornhill R. Fluctuating asymmetry and psychometric intelligence. Proc R Soc B. 1997; 264: 823–829. doi: 10.1098/rspb.1997.0115 9265189

8. Osterauer R, Marschner L, Betz O, Gerberding M, Sawasdee B, Cloetens P, et al. Turning snails into slugs: induced body plan changes and formation of an internal shell. Evol Dev. 2010; 12(5): 474–483. doi: 10.1111/j.1525-142X.2010.00433.x 20883216

9. Marschner L, Staniek J, Schuster S, Triebskorn R, Köhler H-R. External and internal shell formation in the ramshorn snail Marisa cornuarietis are extremes in a continuum of gradual variation in development. BMC Dev Biol. 2013; 13: Article 22. doi: 10.1186/1471-213X-13-22 23682742

10. Klingenberg CP. A developmental perspective on developmental instability: Theory, models and mechanisms. In: Polak M, editor. Developmental Instability: Causes and Consequences. New York: Oxford University Press; 2003. pp. 14–34.

11. West-Eberhard MJ. Developmental Plasticity and Evolution. New York: Oxford University Press; 2003. 794 p.

12. Weinkauf MFG, Moller T, Koch MC, Kučera M. Disruptive selection and bet-hedging in planktonic Foraminifera: Shell morphology as predictor of extinctions. Front Ecol Evol. 2014; 2: Article 64. doi: 10.3389/fevo.2014.00066

13. Kučera M. Planktonic Foraminifera as tracers of past oceanic environments. In: Hillaire-Marcel C, de Vernal A, Chamley H, editors. Proxies in Late Cenozoic Paleoceanography. Developments in Marine Geology. Amsterdam: Elsevier; 2007. pp. 213–262.

14. Schiebel R. Planktic foraminiferal sedimentation and the marine calcite budget. Global Biogeochem Cycles. 2002; 16(4): Article 3. doi: 10.1029/2001GB001459

15. Emiliani C. Extinctive evolution: Extinctive and competitive evolution combine into a unified model of evolution. J Theor Biol. 1982; 97(1): 13–33. doi: 10.1016/0022-5193(82)90273-9

16. Emiliani C. Extinction and viruses. Biosystems. 1993; 31(2–3): 155–159. doi: 10.1016/0303-2647(93)90044-d 8155848

17. Norris RD. Pelagic species diversity, biogeography, and evolution. Paleobiology. 2000; 26(4): 236–258. doi: 10.1666/0094-8373(2000)26[236:PSDBAE]2.0.CO;2

18. Malmgren BA. Analysis of the environmental influence on the morphology of Ammonia beccarii (LINNÉ) in Southern European salinas. Geobios. 1984; 17(6): 737–746.

19. Malmgren BA, Kennett JP. Biometric analysis of phenotypic variation in recent Globigerina bulloides dʼOrbigny in the southern Indian Ocean. Mar Micropaleontol. 1976; 1: 3–25. doi: 10.1016/0377-8398(76)90003-7

20. Moller T, Schulz H, Kučera M. The effect of sea surface properties on shell morphology and size of the planktonic foraminifer Neogloboquadrina pachyderma in the North Atlantic. Palaeogeogr, Palaeoclimatol, Palaeoecol. 2013; 391: 34–48. doi: 10.1016/j.palaeo.2011.08.014

21. Mary Y, Knappertsbusch MW. Morphological variability of menardiform globorotalids in the Atlantic Ocean during Mid-Pliocene. Mar Micropaleontol. 2013; 101: 180–193. doi: 10.1016/j.marmicro.2012.12.001

22. Brombacher A, Wilson PA, Bailey I, Ezard THG. The breakdown of static and evolutionary allometries during climatic upheaval. Am Nat. 2017; 190(3): 350–362. doi: 10.1086/692570 28829645

23. Knappertsbusch M. Evolutionary prospection in the Neogene planktic foraminifer Globorotalia menardii and related forms from ODP Hole 925B (Ceara Rise, western tropical Atlantic): Evidence for gradual evolution superimposed by long distance dispersal? Swiss J Palaeontol. 2016; 135(2): 205–248. doi: 10.1007/s13358-016-0113-6

24. Baumfalk YA, Troelstra SR, Ganssen G, Van Zanen MJL. Phenotypic variation of Globorotalia scitula (Foraminiferida) as a response to Pleistocene climatic fluctuations. Mar Geol. 1987; 75: 231–240. doi: 10.1016/0025-3227(87)90106-X

25. Fenton M, Geiselhart S, Rohling EJ, Hemleben C. Aplanktonic zones in the Red Sea. Mar Micropaleontol. 2000; 40(3): 277–294. doi: 10.1016/S0377-8398(00)00042-6

26. Rohling EJ, Grant K, Bolshaw M, Roberts AP, Siddall M, Hemleben C, et al. Antarctic temperature and global sea level closely coupled over the past five glacial cycles. Nat Geosci. 2009; 2: 500–504. doi: 10.1038/ngeo557

27. Thunell RC, Locke SM, Williams DF. Glacio-eustatic sea-level control on Red Sea salinity. Nature. 1988; 334: 601–604. doi: 10.1038/334601a0

28. Nellen W, Bettac W, Roether W, Schnack D, Thiel H, Weikert H, et al. MINDIK Reise Nr. 5. Hamburg: Leitstelle METEOR; 1996. 179 p.

29. Grant KM, Rohling EJ, Bronk Ramsey C, Cheng H, Edwards RL, Florindo F, et al. Sea-level variability over five glacial cycles. Nat Commun. 2014; 5: Article 5076. doi: 10.1038/ncomms6076 25254503

30. Rostek F, Bard E, Beaufort L, Sonzogni C, Ganssen G. Sea surface temperature and productivity records for the past 240 kyr in the Arabian Sea. Deep-Sea Res, Part II. 1997; 44(6–7): 1461–1480. doi: 10.1016/S0967-0645(97)00008-8

31. Prell WL, Martin A, Cullen JL, Trend M. The Brown University Foraminiferal Data Base (BFD). PANGAEA; 1999.

32. Prell WL, Martin A, Cullen JL, Trend M. The Brown University Foraminiferal Data Base. Boulder: NOAA/NGDC Paleoclimatology Program, 1999 Contract No.: 1999–027.

33. Hesemann M, editor The internet project. 7th Micropalaeontological Workshop Abstracts and Excursion Guide: Mikro-2009, Sw Katarzyna, Poland, 28–30 September 2009; 2009; Warszawa: Grzybowski Foundation.

34. Rebotim A, Voelker AHL, Jonkers L, Waniek JJ, Meggers H, Schiebel R, et al. Factors controlling the depth habitat of planktonic Foraminifera in the subtropical eastern North Atlantic. Biogeosciences. 2017; 14: 827–859. doi: 10.5194/bg-14-827-2017

35. Schiebel R, Hemleben C. Planktic Foraminifers in the Modern Ocean. Berlin, Heidelberg: Springer-Verlag; 2017. 358 p.

36. Meilland J, Siccha M, Weinkauf MFG, Jonkers L, Morard R, Baranowski U, et al. Highly replicated sampling reveals no diurnal vertical migration but stable species-specific vertical habitats in planktonic Foraminifera. J Plankton Res. 2019; 41(2): 127–141. doi: 10.1093/plankt/fbz002

37. Peeters F, Ivanova E, Conan S, Brummer G-J, Ganssen G, Troelstra S, et al. A size analysis of planktic Foraminifera from the Arabian Sea. Mar Micropaleontol. 1999; 36(1): 31–61. doi: 10.1016/S0377-8398(98)00026-7

38. Schindelin J, Arganda-Carreras I, Frise E, Kayning V, Longair M, Pietzsch T, et al. Fiji: An open-source platform for biological-image analysis. Nat Methods. 2012; 9: 676–682. doi: 10.1038/nmeth.2019 22743772

39. Caron DA, Faber WW Jr., Bé AWH. Growth of the spinose planktonic foraminifer Orbulina universa in laboratory culture and the effect of temperature on life processes. J Mar Biol Assoc U K. 1987; 67(2): 343–358. doi: 10.1017/S0025315400026655

40. Spero HJ. Ultrastructural examination of chamber morphogenesis and biomineralization in the planktonic foraminifer Orbulina universa. Mar Biol. 1988; 99(1): 9–20. doi: 10.1007/BF00644972

41. R Core Team. R: A Language and Environment for Statistical Computing. 3.5.1 ed. Vienna: R Foundation for Statistical Computing; 2018.

42. André A, Weiner A, Quillévéré F, Aurahs R, Morard R, Douady CJ, et al. The cryptic and the apparent reversed: Lack of genetic differentiation within the morphologically diverse plexus of the planktonic foraminifer Globigerinoides sacculifer. Paleobiology. 2013; 39(1): 21–39. doi: 10.1666/0094-8373-39.1.21

43. Shapiro SS, Wilk MB. An analysis of variance test for normality (complete samples). Biometrika. 1965; 52(3–4): 591–611. doi: 10.1093/biomet/52.3–4.591

44. Fligner MA, Killeen TJ. Distribution-free two-sample tests for scale. J Am Stat Assoc. 1976; 71(353): 210–213. doi: 10.1080/01621459.1976.10481517

45. Davison AC, Hinkley DV. Bootstrap Methods and their Applications. Cambridge: Cambridge University Press; 1997. 582 p.

46. Heslop D, De Schepper S, Proske U. Diagnosing the uncertainty of taxa relative abundances derived from count data. Mar Micropaleontol. 2011; 79: 114–120. doi: 10.1016/j.marmicro.2011.01.007

47. Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat. 2001; 29(4): 1165–1188. doi: 10.1214/aos/1013699998

48. Nelder JA, Wedderburn RWM. Generalized linear models. J R Stat Soc, Ser A: Gen. 1972; 135(3): 370–384.

49. Nagelkerke NJD. A note on a general definition of the coefficient of determination. Biometrika. 1991; 78(3): 691–692. doi: 10.1093/biomet/78.3.691

50. Claude J. Morphometrics with R. Gentleman R, Hornik K, Parmigiani G, editors. New York: Springer-Verlag; 2008. 316 p.

51. Zelditch ML, Swiderski DL, Sheets HD. Geometric Morphometrics for Biologists: A Primer. 2nd ed. London, Waltham, San Diego: Academic Press; 2012. 478 p.

52. Kruskal WH, Wallis WA. Use of ranks in one-criterion variance analysis. J Am Stat Assoc. 1952; 47(260): 583–621. doi: 10.1080/01621459.1952.10483441

53. Mann HB, Whitney DR. On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat. 1947; 18(1): 50–60. doi: 10.1214/aoms/1177730491

54. Hartigan JA, Hartigan PM. The dip test of unimodality. Ann Stat. 1985; 13(1): 70–84. doi: 10.1214/aos/1176346577

55. Ellison AM. Effect of seed dimorphism on the density-dependent dynamics of experimental populations of Atriplex triangularis (Chenopodiaceae). Am J Bot. 1987; 74(8): 1280–1288. doi: 10.1002/j.1537-2197.1987.tb08741.x

56. Vangel MG. Confidence intervals for a normal coefficient of variation. Am Stat. 1996; 50(1): 21–26.

57. Kendall MG. A new measurement of rank correlation. Biometrika. 1938; 30(1–2): 81–93. doi: 10.1093/biomet/30.1–2.81

58. Theil H. A rank-invariant method of linear and polynomial regression analysis, III. Proc K Ned Akad Wet. 1950; 53(9): 1397–1412.

59. Sen PK. Estimates of the regression coefficient based on Kendallʼs Tau. J Am Stat Assoc. 1968; 63(324): 1379–1389.

60. Kendall DG. Shape manifolds, Procrustean metrics, and complex projective spaces. Bull London Math Soc. 1984; 16(2): 81–121. doi: 10.1112/blms/16.2.81

61. Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001; 26(1): 32–46. doi: 10.1111/j.1442-9993.2001.01070.pp.x

62. Bookstein FL. Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Trans Pattern Anal Mach Int. 1989; 11(6): 567–585. doi: 10.1109/34.24792

63. Fisher RA. The use of multiple measurements in taxonomic problems. Ann Hum Genet. 1936; 7: 179–188. doi: 10.1111/j.1469-1809.1936.tb02137.x

64. Venables WN, Ripley BD. Modern Applied Statistics with S. 4th ed: Springer-Verlag; 2002. 495 p.

65. Hunt G. Fitting and comparing models of phyletic evolution: Random walks and beyond. Paleobiology. 2006; 32(4): 578–601. doi: 10.1666/05070.1

66. Akaike H. A new look at the statistical model identification. IEEE Trans Autom Control. 1974; 19(6): 716–723. doi: 10.1109/TAC.1974.1100705

67. Wagenmakers E-J, Farrell S. AIC model selection using Akaike weights. Psychon Bull Rev. 2004; 11(1): 192–196. doi: 10.3758/BF03206482 15117008

68. Yezerinac SM, Lougheed SC, Handford P. Measurement error and morphometric studies: Statistical power and observer experience. Syst Biol. 1992; 41(4): 471–482. doi: 10.1093/sysbio/41.4.471

69. Stearns SC. The evolutionary significance of phenotypic plasticity. BioScience. 1989; 39(7): 436–445. doi: 10.2307/1311135

70. Wagner GP, Altenberg L. Perspective: Complex adaptations and the evolution of evolvability. Evol: Int J Org Evol. 1996; 50(3): 967–976. doi: 10.2307/2410639

71. Sultan SE, Stearns SC. Environmentally contingent variation: Phenotypic plasticity and norms of reaction. In: Hallgrímsson B, Hall BK, editors. Variation: A Central Concept in Biology. Burlington, San Diego, London: Elsevier; 2005. pp. 303–332.

72. Wagner A. The Origins of Evolutionary Innovation: A Theory of Transformative Change in Living Systems. New York: Oxford University Press; 2011. 253 p.

73. de Vargas C, Norris RD, Zaninetti L, Gibb SW, Pawlowski J. Molecular evidence of cryptic speciation in planktonic foraminifers and their relation to oceanic provinces. Proc Natl Acad Sci USA. 1999; 96: 2864–2868. doi: 10.1073/pnas.96.6.2864 10077602

74. Darling KF, Wade CM. The genetic diversity of planktic Foraminifera and the global distribution of ribosomal RNA genotypes. Mar Micropaleontol. 2008; 67: 216–238. doi: 10.1016/j.marmicro.2008.01.009

75. Ortiz JD, Mix AC, Collier RW. Environmental control of living symbiotic and asymbiotic Foraminifera of the California Current. Paleoceanography. 1995; 10(6): 987–1009. doi: 10.1029/95PA02088

76. Schmidt DN, Renaud S, Bollmann J, Schiebel R, Thierstein HR. Size distribution of Holocene planktic foraminifer assemblages: Biogeography, ecology and adaptation. Mar Micropaleontol. 2004; 50: 319–338. doi: 10.1016/S0377-8398(03)00098-7

77. Haenel P. Intérêt paléoocéanographique dʼOrbulina universa dʼOrbigny (foraminifère). Oceanol Acta. 1987; 10(1): 15–25.

78. Drake JM, Griffen BD. Early warning signals of extinction in deteriorating environments. Nature. 2010; 467(7314): 456–459. doi: 10.1038/nature09389 20827269

79. Robbins LL. Environmental significance of morphologic variability in open-ocean versus ocean-margin assemblages of Orbulina universa. J Foraminiferal Res. 1988; 18(4): 326–333. doi: 10.2113/gsjfr.18.4.326

80. Klingenberg CP. Morphological integration and developmental modularity. Annu Rev Ecol Evol Syst. 2008; 39: 115–132. doi: 10.1146/annurev.ecolsys.37.091305.110054

81. Morard R, Quillévéré F, Escarguel G, Ujiié Y, de Garidel-Thoron T, Norris RD, et al. Morphological recognition of cryptic species in the planktonic foraminifer Orbulina universa. Mar Micropaleontol. 2009; 71: 148–165. doi: 10.1016/j.marmicro.2009.03.001

82. Sofianos SS, Johns WE. An Oceanic General Circulation Model (OGCM) investigation of the Red Sea circulation: 2. Three-dimensional circulation in the Red Sea. J Geophys Res, Oceans. 2003; 108(C3): Article 3066. doi: 10.1029/2001JC001185

83. Badyaev AV. Role of stress in evolution: From individual adaptability to evolutionary adaptation. In: Hallgrímsson B, Hall BK, editors. Variation: A Central Concept in Biology. Burlington, San Diego, London: Elsevier; 2005. pp. 277–302.

84. Hunt G. The relative importance of directional change, random walks, and stasis in the evolution of fossil lineages. Proc Natl Acad Sci USA. 2007; 104(47): 18404–18408. doi: 10.1073/pnas.0704088104 18003931

85. Parsons PA. Morphological stasis: An energetic and ecological perspective incorporating stress. J Theor Biol. 1994; 171(4): 409–414. doi: 10.1006/jtbi.1994.1244

86. Waddington CH. Canalization of development and the inheritance of aquired characters. Nature. 1942; 150(3811): 563–565. doi: 10.1038/150563a0

87. Pélabon C, Hansen TF, Carter AJR, Houle D. Evolution of variation and variability under fluctuating, stabilizing, and disruptive selection. Evol: Int J Org Evol. 2010; 64(7): 1912–1925. doi: 10.1111/j.1558-5646.2010.00979.x 20199560

88. Kawecki TJ. The evolution of genetic canalization under fluctuating selection. Evol: Int J Org Evol. 2000; 54(1): 1–12. doi: 10.1111/j.0014-3820.2000.tb00001.x 10937177

89. Baldwin JM. Development and Evolution. London: Macmillan & Co., Ltd.; 1902. 395 p.

90. Caron DA, Faber WW Jr., Bé AWH. Effects of temperature and salinity on the growth and survival of the planktonic foraminifer Globigerinoides sacculifer. J Mar Biol Assoc U K. 1987; 67(2): 323–341. doi: 10.1017/S0025315400026643

91. Hemleben C, Spindler M, Breitinger I, Ott R. Morphological and physiological responses of Globigerinoides sacculifer (Brady) under varying laboratory conditions. Mar Micropaleontol. 1987; 12: 305–324. doi: 10.1016/0377-8398(87)90025-9

92. Berger WH. Kummerform Foraminifera as clues to oceanic environments. Bull Am Assoc Pet Geol. 1969; 53(3): 706.

93. Gibson G, Wagner G. Canalization in evolutionary genetics: A stabilizing theory? BioEssays. 2000; 22(4): 372–380. doi: 10.1002/(SICI)1521-1878(200004)22:4<372::AID-BIES7>3.0.CO;2-J 10723034

94. Strom SL, Harvey EL, Fredrickson KA, Menden-Deuer S. Broad salinity tolerance as a refuge from predation in the harmful raphidophyte alga Heterosigma akashiwo (Raphidophyceae) J Phycol. 2013; 49(1): 20–31. doi: 10.1111/jpy.12013 27008385

95. Balzano S, Abs E, Leterme SC. Protist diversity along a salinity gradient in a coastal lagoon. Aquat Microb Ecol. 2015; 74(3): 263–277. doi: 10.3354/ame01740

96. Zhang J, Li Y, Chen J. Salinity tolerance and genetic diversity of the dinoflagellate Oxyrrhis marina. J Ocean Univ China. 2010; 9(1): 87–93. doi: 10.1007/s11802-010-0087-8

97. Waddington CH. The Strategy of the Genes: A Discussion of some Aspects of Theoretical Biology. London: Allen & Unwin; 1957. 262 p.

98. Bé AWH. An ecological, zoogeographic and taxonomic review of recent planctonic Foraminifera. In: Ramsay ATS, editor. Oceanic Micropalaeontology. 1. London, New York, San Francisco: Academic Press; 1977. pp. 1–100.

99. Pawlowski J, Bolivar I, Fahrni JF, de Vargas C, Gouy M, Zaninetti L. Extreme differences in rates of molecular evolution of Foraminifera revealed by comparison of ribosomal DNA sequences and the fossil record. Mol Biol Evol. 1997; 14(5): 498–505. doi: 10.1093/oxfordjournals.molbev.a025786 9159927

100. Goldstein ST. Foraminifera: A biological overview. In: Sen Gupta BK, editor. Modern Foraminifera. Dordrecht: Kluwer Academic Publishers; 2002. pp. 37–55.

101. LeKieffre C, Bernhard JM, Mabilleau G, Filipsson HL, Meibom A, Geslin E. An overview of cellular ultrastructure in benthic Foraminifera: New observations of rotalid species in the context of existing literature. Mar Micropaleontol. 2018; 138: 12–32. doi: 10.1016/j.marmicro.2017.10.005

102. Thunell R, Belyea P. Neogene planktonic foraminiferal biogeography of the Atlantic Ocean Micropaleontology. 1982; 28(4): 381–398. doi: 10.2307/1485451

103. Prell WL, Damuth JE. The climate-related diachronous disappearance of Pulleniatina obliquiloculata in late Quaternary sediments of the Atlantic and Caribbean. Mar Micropaleontol. 1978; 3(3): 267–277. doi: 10.1016/0377-8398(78)90031-2

104. Frankignoulle M, Canon C, Gattuso J-P. Marine calcification as a source of carbon dioxide: Positive feedback of increasing atmospheric CO2. Limnol Oceanogr. 1994; 39(2): 458–462. doi: 10.4319/lo.1994.39.2.0458

105. Zondervan I, Zeebe RE, Rost B, Riebesell U. Decreasing marine biogenic calcification: A negative feedback on rising atmospheric pCO2. Global Biogeochem Cycles. 2001; 15(2): 507–516. doi: 10.1029/2000GB001321

Článek vyšel v časopise


2019 Číslo 10