Common variants in glyoxalase I do not increase chronic pancreatitis risk


Autoři: Tom Kaune aff001;  Marcus Hollenbach aff002;  Bettina Keil aff001;  Jian-Min Chen aff003;  Emmanuelle Masson aff003;  Carla Becker aff001;  Marko Damm aff001;  Claudia Ruffert aff001;  Robert Grützmann aff005;  Albrecht Hoffmeister aff002;  Rene H. M. te Morsche aff006;  Giulia Martina Cavestro aff007;  Raffaella Alessia Zuppardo aff007;  Adrian Saftoiu aff008;  Ewa Malecka-Panas aff009;  Stanislaw Głuszek aff010;  Peter Bugert aff011;  Markus M. Lerch aff012;  Frank Ulrich Weiss aff012;  Wen-Bin Zou aff013;  Zhuan Liao aff013;  Peter Hegyi aff014;  Joost PH Drenth aff006;  Jan Riedel aff001;  Claude Férec aff003;  Markus Scholz aff016;  Holger Kirsten aff016;  Andrea Tóth aff018;  Maren Ewers aff018;  Heiko Witt aff018;  Heidi Griesmann aff001;  Patrick Michl aff001;  Jonas Rosendahl aff001
Působiště autorů: Department of Internal Medicine I, Martin Luther University, Halle, Germany aff001;  Medical Department II–Gastroenterology, Hepatology, Infectious Diseases, Pulmonology, University of Leipzig Medical Center, Leipzig, Germany aff002;  Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Etablissement Français du Sang (EFS)–Bretagne, Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale, Brest, France aff003;  Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Régional Universitaire (CHRU) Brest, Hôpital Morvan, Brest, France aff004;  Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Chirurgische Klinik, Erlangen, Germany aff005;  Department of Gastroenterology and Hepatology, Radboud umc, Nijmegen, The Netherlands aff006;  Gastroenterology and Gastrointestinal Endoscopy Unit, Division of Experimental Oncology, Vita-Salute San Raffaele University, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy aff007;  Department of Internal Medicine and Gastroenterology, University of Medicine and Pharmacy, Craiova, Romania aff008;  Department of Digestive Tract Diseases, Medical University of Łódź, Łódź, Poland aff009;  Faculty of Medicine and Health Sciences, Jan Kochanowski University, Kielce, Poland aff010;  Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service of Baden-Württemberg, Mannheim, Germany aff011;  Department of Medicine A, University Medicine Greifswald, Greifswald, Germany aff012;  Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai Institute of Pancreatic Diseases, Shanghai, China aff013;  Institute for Translational Medicine and First Department of Internal Medicine, Medical School, University of Pécs, Pécs, Hungary aff014;  HAS-SZTE, Momentum Gastroenterology Multidisciplinary Research Group, Szeged, Hungary aff015;  Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany aff016;  LIFE- Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany aff017;  Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Paediatric Nutritional Medicine, Technische Universität München (TUM), Freising, Germany aff018
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0222927

Souhrn

Introduction

Chronic pancreatitis (CP) may be caused by oxidative stress. An important source of reactive oxygen species (ROS) is the methylglyoxal-derived formation of advanced glycation endproducts (AGE). Methylglyoxal is detoxified by Glyoxalase I (GLO1). A reduction in GLO1 activity results in increased ROS. Single nucleotide polymorphisms (SNPs) of GLO1 have been linked to various inflammatory diseases. Here, we analyzed whether common GLO1 variants are associated with alcoholic (ACP) and non-alcoholic CP (NACP).

Methods

Using melting curve analysis, we genotyped a screening cohort of 223 ACP, 218 NACP patients, and 328 controls for 11 tagging SNPs defined by the SNPinfo LD TAG SNP Selection tool and the functionally relevant variant rs4746. For selected variants the cohorts were extended to up to 1,441 patient samples.

Results

In the ACP cohort, comparison of genotypes for rs1937780 between patients and controls displayed an ambiguous result in the screening cohort (p = 0.08). However, in the extended cohort of 1,441 patients no statistically significant association was found for the comparison of genotypes (p = 0.11), nor in logistic regression analysis (p = 0.214, OR 1.072, 95% CI 0.961–1.196). In the NACP screening cohort SNPs rs937662, rs1699012, and rs4746 displayed an ambiguous result when patients were compared to controls in the recessive or dominant model (p = 0.08, 0.08, and 0.07, respectively). Again, these associations were not confirmed in the extended cohorts (rs937662, dominant model: p = 0.07, logistic regression: p = 0.07, OR 1.207, 95% CI 0.985–1.480) or in the replication cohorts for rs4746 (Germany, p = 0.42, OR 1.080, 95% CI 0.673–1.124; France, p = 0.19, OR 0.90, 95% CI 0.76–1.06; China, p = 0.24, OR 1.18, 95% CI 0.90–1.54) and rs1699012 (Germany, Munich; p = 0.279, OR 0.903, 95% CI 0.750–1.087).

Conclusions

Common GLO1 variants do not increase chronic pancreatitis risk.

Klíčová slova:

Alcoholics – German people – Human genetics – Molecular genetics – Pancreatitis – Polymerase chain reaction – Regression analysis – Variant genotypes


Zdroje

1. Majumder S, Chari ST. Chronic pancreatitis. Lancet. 2016;387: 1957–1966 doi: 10.1016/S0140-6736(16)00097-0 26948434

2. Mayerle J, Sendler M, Hegyi E, Beyer G, Lerch MM, Sahin-Toth M. Genetics, Cell Biology, and Pathophysiology of Pancreatitis. Gastroenterology. 2019;156: 1951–1968 doi: 10.1053/j.gastro.2018.11.081 30660731

3. Liu F, Shi Y, Zhang XQ, Xu XF, Chen Y, Zhang H. [The role of oxidative inflammatory cascade on pancreatic fibrosis progression in mice induced by DBTC plus ethanol]. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2015;31: 477–480 26827547

4. Yu JH, Kim H. Oxidative stress and inflammatory signaling in cerulein pancreatitis. World J Gastroenterol. 2014;20: 17324–17329 doi: 10.3748/wjg.v20.i46.17324 25516643

5. Verlaan M, Roelofs HM, van-Schaik A, Wanten GJ, Jansen JB, Peters WH, et al. Assessment of oxidative stress in chronic pancreatitis patients. World J Gastroenterol. 2006;12: 5705–5710 doi: 10.3748/wjg.v12.i35.5705 17007026

6. Singh R, Barden A, Mori T, Beilin L. Advanced glycation end-products: a review. Diabetologia. 2001;44: 129–146 doi: 10.1007/s001250051591 11270668

7. Maciejczyk M, Skutnik-Radziszewska A, Zieniewska I, Matczuk J, Domel E, Waszkiel D, et al. Antioxidant Defense, Oxidative Modification, and Salivary Gland Function in an Early Phase of Cerulein Pancreatitis. Oxid Med Cell Longev. 2019;2019: 8403578 doi: 10.1155/2019/8403578 30984340

8. Ohmori S, Mori M, Shiraha K, Kawase M. Biosynthesis and degradation of methylglyoxal in animals. Prog Clin Biol Res. 1989;290: 397–412 2498903

9. Ray S, Ray M. Formation of methylglyoxal from aminoacetone by amine oxidase from goat plasma. J Biol Chem. 1983;258: 3461–3462 6833209

10. Casazza JP, Felver ME, Veech RL. The metabolism of acetone in rat. J Biol Chem. 1984;259: 231–236 6706932

11. Phillips SA, Thornalley PJ. The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal. Eur J Biochem. 1993;212: 101–105 doi: 10.1111/j.1432-1033.1993.tb17638.x 8444148

12. Vaca CE, Fang JL, Conradi M, Hou SM. Development of a 32P-postlabelling method for the analysis of 2'-deoxyguanosine-3'-monophosphate and DNA adducts of methylglyoxal. Carcinogenesis. 1994;15: 1887–1894 doi: 10.1093/carcin/15.9.1887 7923582

13. Lo TW, Westwood ME, McLellan AC, Selwood T, Thornalley PJ. Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with N alpha-acetylarginine, N alpha-acetylcysteine, and N alpha-acetyllysine, and bovine serum albumin. J Biol Chem. 1994;269: 32299–32305 7798230

14. Hollenbach M. The Role of Glyoxalase-I (Glo-I), Advanced Glycation Endproducts (AGEs), and Their Receptor (RAGE) in Chronic Liver Disease and Hepatocellular Carcinoma (HCC). Int J Mol Sci. 2017;18:

15. Thornalley PJ. The glyoxalase system in health and disease. Mol Aspects Med. 1993;14: 287–371 8277832

16. Mannervik B. Glyoxalase I. In: Enzymatic Basis of Detoxification. Academic Press, New York. 1980;2: 263–293

17. Junaid MA, Kowal D, Barua M, Pullarkat PS, Sklower BS, Pullarkat RK. Proteomic studies identified a single nucleotide polymorphism in glyoxalase I as autism susceptibility factor. Am J Med Genet A. 2004;131: 11–17 doi: 10.1002/ajmg.a.30349 15386471

18. Barua M, Jenkins EC, Chen W, Kuizon S, Pullarkat RK, Junaid MA. Glyoxalase I polymorphism rs2736654 causing the Ala111Glu substitution modulates enzyme activity—implications for autism. Autism Res. 2011;4: 262–270 doi: 10.1002/aur.197 21491613

19. Groener JB, Reismann P, Fleming T, Kalscheuer H, Lehnhoff D, Hamann A, et al. C332C genotype of glyoxalase 1 and its association with late diabetic complications. Exp Clin Endocrinol Diabetes. 2013;121: 436–439 doi: 10.1055/s-0033-1345124 23775136

20. Wu JC, Li XH, Wang JB, Tang JF, Wang YF, Peng YD. Glyoxalase I and aldose reductase gene polymorphisms and susceptibility to carotid atherosclerosis in type 2 diabetes. Genet Test Mol Biomarkers. 2011;15: 273–279 doi: 10.1089/gtmb.2010.0075 21294693

21. Kalousova M, Germanova A, Jachymova M, Mestek O, Tesar V, Zima T. A419C (E111A) polymorphism of the glyoxalase I gene and vascular complications in chronic hemodialysis patients. Ann N Y Acad Sci. 2008;1126: 268–271 doi: 10.1196/annals.1433.012 18079478

22. Gale CP, Futers TS, Summers LK. Common polymorphisms in the glyoxalase-1 gene and their association with pro-thrombotic factors. Diab Vasc Dis Res. 2004;1: 34–39 doi: 10.3132/dvdr.2004.004 16305054

23. Rinaldi C, Bramanti P, Fama A, Scimone C, Donato L, Antognelli C, et al. GLYOXALASE I A111E, PARAOXONASE 1 Q192R AND L55M POLYMORPHISMS IN ITALIAN PATIENTS WITH SPORADIC CEREBRAL CAVERNOUS MALFORMATIONS: A PILOT STUDY. J Biol Regul Homeost Agents. 2015;29: 493–500 26122242

24. Williams R, Lim JE, Harr B, Wing C, Walters R, Distler MG, et al. A common and unstable copy number variant is associated with differences in Glo1 expression and anxiety-like behavior. PLoS One. 2009;4: e4649 doi: 10.1371/journal.pone.0004649 19266052

25. Sidoti A, Antognelli C, Rinaldi C, D'Angelo R, Dattola V, Girlanda P, et al. Glyoxalase I A111E, paraoxonase 1 Q192R and L55M polymorphisms: susceptibility factors of multiple sclerosis? Mult Scler. 2007;13: 446–453 doi: 10.1177/13524585070130040201 17463067

26. Antognelli C, Mezzasoma L, Mearini E, Talesa VN. Glyoxalase 1-419C>A variant is associated with oxidative stress: implications in prostate cancer progression. PLoS One. 2013;8: e74014 doi: 10.1371/journal.pone.0074014 24040147

27. Krechler T, Jachymova M, Mestek O, Zak A, Zima T, Kalousova M. Soluble receptor for advanced glycation end-products (sRAGE) and polymorphisms of RAGE and glyoxalase I genes in patients with pancreas cancer. Clin Biochem. 2010;43: 882–886 doi: 10.1016/j.clinbiochem.2010.04.004 20398646

28. Antognelli C, Del BC, Ludovini V, Gori S, Talesa VN, Crino L, et al. CYP17, GSTP1, PON1 and GLO1 gene polymorphisms as risk factors for breast cancer: an Italian case-control study. BMC Cancer. 2009;9: 115 doi: 10.1186/1471-2407-9-115 19379515

29. Chocholaty M, Jachymova M, Schmidt M, Havlova K, Krepelova A, Zima T, et al. Polymorphisms of the receptor for advanced glycation end-products and glyoxalase I in patients with renal cancer. Tumour Biol. 2015;36: 2121–2126 doi: 10.1007/s13277-014-2821-0 25407489

30. Peculis R, Konrade I, Skapare E, Fridmanis D, Nikitina-Zake L, Lejnieks A, et al. Identification of glyoxalase 1 polymorphisms associated with enzyme activity. Gene. 2013;515: 140–143 doi: 10.1016/j.gene.2012.11.009 23201419

31. Lohr JM, Dominguez-Munoz E, Rosendahl J, Besselink M, Mayerle J, Lerch MM, et al. United European Gastroenterology evidence-based guidelines for the diagnosis and therapy of chronic pancreatitis (HaPanEU). United European Gastroenterol J. 2017;5: 153–199 doi: 10.1177/2050640616684695 28344786

32. Derikx MH, Kovacs P, Scholz M, Masson E, Chen JM, Ruffert C, et al. Polymorphisms at PRSS1-PRSS2 and CLDN2-MORC4 loci associate with alcoholic and non-alcoholic chronic pancreatitis in a European replication study. Gut. 2015;64: 1426–1433 doi: 10.1136/gutjnl-2014-307453 25253127

33. Duan Z, Chen G, Chen L, Stolzenberg-Solomon R, Weinstein SJ, Mannisto S, et al. Determinants of concentrations of N(epsilon)-carboxymethyl-lysine and soluble receptor for advanced glycation end products and their associations with risk of pancreatic cancer. Int J Mol Epidemiol Genet. 2014;5: 152–163 25379135

34. Rinaldi C, Bramanti P, Fama A, Scimone C, Donato L, Antognelli C, et al. GLYOXALASE I A111E, PARAOXONASE 1 Q192R AND L55M POLYMORPHISMS IN ITALIAN PATIENTS WITH SPORADIC CEREBRAL CAVERNOUS MALFORMATIONS: A PILOT STUDY. J Biol Regul Homeost Agents. 2015;29: 493–500 26122242


Článek vyšel v časopise

PLOS One


2019 Číslo 10