Optimized bioluminescence analysis of adenosine triphosphate (ATP) released by platelets and its application in the high throughput screening of platelet inhibitors

Autoři: Lili Wang aff001;  Yunqian Li aff001;  Ran Guo aff001;  Shanshan Li aff001;  Anqi Chang aff001;  Zhixiang Zhu aff001;  Pengfei Tu aff001
Působiště autorů: Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China aff001
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0223096


Activated platelets release adenosine trisphosphate (ATP) and bioluminescence analysis of ATP release is usually used to monitor activation of platelets induced by various stimulants. However, bioluminescence analysis of ATP possesses poor linearity, the signal is quickly attenuated, and the accuracy of ATP release from platelets is hard to determine accurately enough to be used in a high throughput screening of platelet inhibitors. The present study was designed to optimize bioluminescence analysis of ATP released by platelets and expand its application in high throughput screening of platelet inhibitors. The results showed that accuracy of ATP analysis was significantly improved by adding coenzyme A (CoA) and signal attenuation of ATP analysis was greatly postponed by adding bovine serum albumin (BSA) both in Hank’s balanced salt solution (HBSS) and Tyrode’s buffer. Furthermore, ATP release of activated platelets and inhibitory effects of Ly294002 and Staurosporine on platelet activation were accurately determined by our optimized bioluminescence analysis of ATP. Thus, we have successfully constructed an optimized bioluminescence analysis of ATP which can be used in high throughput screening of platelet inhibitors.

Klíčová slova:

Bioluminescence – Collagens – Enzymes – Luciferase – Platelet activation – Platelets – Thrombin – Reaction systems


1. Petzold T, Ruppert R, Pandey D, Barocke V, Meyer H, Lorenz M, et al. β1 integrin-mediated signals are required for platelet granule secretion and hemostasis in mouse. Blood. 2013; 122(15): 2723–2731. http://doi.org/10.1182/blood-2013-06-508721 24004668.

2. Pleines I, Eckly A, Elvers M, Hagedorn I, Eliautou S, Bender M, et al. Multiple alterations of platelet functions dominated by increased secretion in mice lacking Cdc42 in platelets. Blood. 2010; 115(16): 3364–3373. http://doi.org/10.1182/blood-2009-09-242271 20139097.

3. May F, Hagedorn I, Pleines I, Bender M, Vogtle T, Eble J, et al. CLEC-2 is an essential platelet-activating receptor in hemostasis and thrombosis. Blood. 2009; 114(16): 3464–3472. http://doi.org/10.1182/blood-2009-05-222273 19641185.

4. Flevaris P, Li ZY, Zhang GY, Zheng Y, Liu JL, Du XP. Two distinct roles of mitogen-acitivated protein kinases in platelets and a novel Rac1-MAPK-dependent integrin outside-in retractile signaling pathway. Blood. 2009; 113(4): 893–901. http://doi.org/10.1182/blood-2008-05-155978 18957688.

5. Fan F, Wood KV. Bioluminescent assays for high-throughput screening. Assay Drug Dev Techn. 2007; 5(1): 127–136. http://doi.org/10.1089/adt.2006.053 17355205.

6. Mishra P, Rai S, Manjithaya R. A novel dual luciferase based high throughput assay to monitor autophagy in real time in yeast S. cerevisiae. Biochem Biophys Rep. 2017; 11: 138–146. http://doi.org/10.1016/j.bbrep.2017.07.008 28955778; PubMed Central PMCID: PMC5614714.

7. Lima AM, Bragina ME, Burri O, Chapalay JB, Costa-Fraga FP, Chambon M, et al. An optimized and validated 384-well plate assay to test platelet function in a high-throughput screening format. Platelets. 2018; 5: 1–9. http://doi.org/10.1080/09537104.2018.1514106 30183501.

8. Fontes R, Dukhovich A, Sillero A, Sillero MG. Synthesis of dehydroluciferin by firefly luciferase: effect of dehydroluciferin, coenzyme A and nucleoside triphosphates on the luminescent reaction. Biochem Bioph Res Co. 1997; 237(2): 445–450. http://doi.org/10.1006/bbrc.1997.7161 9268731.

9. Fontes R, Ortiz B, Diego A, Sillero A, Gunther Sillero MA. Dehydroluciferyl-AMP is the main intermediate in the luciferin dependent synthesis of Ap4A catalyzed by firefly luciferase. FEBS Lett. 1998; 438(3): 190–194. doi: 10.1016/s0014-5793(98)01301-5 9827543.

10. Ribeiro C, Esteves da Silva J. Kinetics of inhibition of firefly luciferase by oxyluciferin and dehydroluciferyl-adenylate. Photochem Photobiol Sci. 2008; 7(9): 1085–1090. http://doi.org/10.1039/b809935a 18754056.

11. Airth RL, Rhodes WC, Mcelroy WD. The function of coenzyme A in luminescence. Biochim Biophys Acta. 1958; 27(3): 519–532. doi: 10.1016/0006-3002(58)90381-0 13535634.

12. Ford SR, Buck LM, Leach FR. Does the sulfhydryl or the adenine moiety of CoA enhance firefly luciferase activity? BBA-Gen Subjects. 1995; 1252(2): 180–184. doi: 10.1016/0167-4838(95)00150-s 7578220.

13. Fraga H, Fernandes D, Fontes R, Esteves da Silva J. Coenzyme A affects firefly luciferase luminescence because it acts as a substrate and not as an allosteric effector. FEBS J. 2005; 272(20): 5206–5216. http://doi.org/10.1111/j.1742-4658.2005.04895.x 16218952.

14. Pinto da Silva L, Esteves da Silva J. Kinetics of inhibition of firefly luciferase by dehydroluciferyl-coenzyme A, dehydroluciferin and L-luciferin. Photochem Photobiol Sci. 2011; 10: 1039–1045. http://doi.org/10.1039/c0pp00379d 21409209.

15. Kamidate T, Niwa S, Nakata N. Application of cationic liposomes containing surfactants to an enhancer in firefly bioluminescent assay of adenosine 5’-triphosphate. Anal Chim Acta. 2000; 424: 169–175.

16. Kamidate T, Kinkou T, Watanabe H. Cationic liposomes enhanced firefly bioluminescent assay of adenosine 5’-triphosphate disodium salt. Anal Biochem. 1997; 244(1): 62–66. http://doi.org/10.1006/abio.1996.9832 9025909.

17. Yang LH, Jin MJ, Du PF, Chen G, Zhang C, Wang J, et al. Study on enhancement principle and stabilization for the luminol-H2O2-HRP chemiluminescence system. Plos One. 2015. http://doi.org/10.1371/journal.pone.0131193 26154162; PubMed Central PMCID: PMC4495922.

18. Konopatskaya O, Matthews SA, Harper MT, Gilio K, Cosemans JM, Williams CM, et al. Protein kinase C mediates platelet secretion and thrombus formation through protein kinase D2. Blood. 2011; 118(2): 416–424. http://doi.org/10.1182/blood-2010-10-312199 21527521; PubMed Central PMCID: PMC4773892.

19. Jr BN, Bhavaraju K, Getz T, Bynagari YS, Kim S, Kunapuli SP. Impaired activation of platelets lacking protein kinase C-θ isoform. Blood. 2009; 113(11): 2557–2567. http://doi.org/10.1182/blood-2008-07-169268 19164598; PubMed Central PMCID: PMC2656276.

20. Lian LR, Wang YF, Flick M, Choi J, Scott EW, Degen J, et al. Loss of pleckstrin defines a novel pathway for PKC-mediated exocytosis. Blood. 2009; 113(15): 3577–3584. http://doi.org/10.1182/blood-2008-09-178913 19190246; PubMed Central PMCID: PMC2668855.

21. Stefanini L, Roden RC, Bergmeier W. CalDAG-GEFI is at the nexus of calcium-dependent platelet activation. Blood. 2009; 114(12): 2506–2514. http://doi.org/10.1182/blood-2009-04-218768 19628710.

22. Pleines I, Elvers M, Strehl A, Pozgajova M, Varga-Szabo D, May F, et al. Rac 1 is essential for phospholipase C-γ2 activation in platelets. Eur J Physiol. 2009; 457(5): 1173–1185. http://doi.org/10.1007/s00424-008-0573-7 18704487.

23. Weng Z, Li D, Zhang L, Chen J, Ruan CG, Chen GQ, et al. PTEN regulates collagen-induced platelet activation. Blood. 2010; 116(14): 2579–2581. http://doi.org/10.1182/blood-2010-03-277236 20554973.

24. Adam F, Kauskot A, Nurden P, Sulpice E, Hoylaerts MF, Davis RJ, et al. Platelet JNK1 is involved in secretion and thrombus formation. Blood. 2010; 115(20): 4083–4092. http://doi.org/10.1182/blood-2009-07-233932 20231429.

25. Canobbio I, Cipolla L, Consonni A, Momi S, Guidetti G, Oliviero B, et al. Impaired thrombin-induced platelet activation and thrombus formation in mice lacking the Ca2+-dependent tyrosine kinase Pyk2. Blood. 2013; 121(4): 648–657. http://doi.org/10.1182/blood-2012-06-438762 23175689.

Článek vyšel v časopise


2019 Číslo 10
Nejčtenější tento týden