Harnessing therapeutic viruses as a delivery vehicle for RNA-based therapy


Autoři: Leena Ylösmäki aff001;  Beatrice Polini aff002;  Sara Carpi aff002;  Beatriz Martins aff001;  Elena Smertina aff001;  Sara Feola aff001;  Manlio Fusciello aff001;  Karita Peltonen aff001;  Paola Nieri aff002;  Erkko Ylösmäki aff001;  Vincenzo Cerullo aff001
Působiště autorů: Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland aff001;  Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Pisa, Pisa, Italy aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224072

Souhrn

Messenger RNA (mRNA) and microRNA (miRNA)-based therapeutics have become attractive alternatives to DNA-based therapeutics due to recent advances in manufacture, scalability and cost. Also, RNA-based therapeutics are considered safe since there are no risk of inducing genomic changes as well as the potential adverse effects would be only temporary due to the transient nature of RNA-based therapeutics. However, efficient in vivo delivery of RNA-based therapeutics remains a challenge. We have developed a delivery platform for RNA-based therapeutics by exploiting the physicochemical properties of enveloped viruses. By physically attaching cationic liposome/RNA complexes onto the viral envelope of vaccinia virus, we were able to deliver mRNA, self-replicating RNA as well as miRNA inside target cells. Also, we showed that this platform, called viRNA platform, can efficiently deliver functional miRNA mimics into B16.OVA tumour in vivo.

Klíčová slova:

Cancer treatment – Flow cytometry – Liposomes – MicroRNAs – RNA viruses – Transfection – Vaccinia virus – Green fluorescent protein


Zdroje

1. Puzanov I, Milhem MM, Minor D, Hamid O, Li A, Chen L, et al. Talimogene Laherparepvec in Combination With Ipilimumab in Previously Untreated. J Clin Oncol. 2016;34(22):2619–26 LID— doi: 10.1200/JCO.2016.67.1529 27298410

2. Ranki T, Pesonen S, Hemminki A, Partanen K, Kairemo K, Alanko T, et al. Phase I study with ONCOS-102 for the treatment of solid tumors—an evaluation of. J Immunother Cancer. 2016;4:17 LID—0.1186/s40425-016-0121-5 doi: 10.1186/s40425-016-0121-5 26981247

3. Meng Z, O'Keeffe-Ahern J Fau—Lyu J, Lyu J Fau—Pierucci L, Pierucci L Fau—Zhou D, Zhou D Fau—Wang W, Wang W. A new developing class of gene delivery: messenger RNA-based therapeutics. Biomater Sci. 2017;5(12):2381–92 LID— doi: 10.1039/c7bm00712d 29063914

4. Chen Y, Gao DY, Huang L. In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv Drug Deliv Rev. 2015;81:128–41 LID— doi: 10.1016/j.addr.2014.05.009 LID - S0169-409X(14)00103-3 [pii]. 24859533

5. Grenda AA-Ohoo, Krawczyk P. New Dancing Couple: PD-L1 and MicroRNA. Scand J Immunol. 2017;86(3):130–4 LID— doi: 10.1111/sji.12577 28675453

6. Moore MW, Carbone Fr Fau—Bevan MJ, Bevan MJ. Introduction of soluble protein into the class I pathway of antigen processing. Cell. 1988;54(6):777–85. doi: 10.1016/s0092-8674(88)91043-4 3261634

7. Hirvinen M, Capasso C, Guse K, Garofalo M, Vitale A, Ahonen M, et al. Expression of DAI by an oncolytic vaccinia virus boosts the immunogenicity of the. Mol Ther Oncolytics. 2016;3:16002 LID— doi: 10.1038/mto.2016.2 27626058

8. Cotter CA, Earl PL, Wyatt LS, Moss B. Preparation of Cell Cultures and Vaccinia Virus Stocks. Curr Protoc Microbiol. 2015;39:14A.3.1–A.3.8 LID—0.1002/9780471729259.mc14a03s39

9. Bofill-De Ros X, Rovira-Rigau M, Fillat C. Implications of MicroRNAs in Oncolytic Virotherapy. Front Oncol. 2017;7:142 LID— doi: 10.3389/fonc.2017.00142 28725635


Článek vyšel v časopise

PLOS One


2019 Číslo 10