Bayesian inverse methods for spatiotemporal characterization of gastric electrical activity from cutaneous multi-electrode recordings


Autoři: Alexis B. Allegra aff001;  Armen A. Gharibans aff002;  Gabriel E. Schamberg aff001;  David C. Kunkel aff003;  Todd P. Coleman aff002
Působiště autorů: Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, United States of America aff001;  Department of Bioengineering, University of California San Diego, La Jolla, CA, United States of America aff002;  Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA, United States of America aff003
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0220315

Souhrn

Gastrointestinal (GI) problems give rise to 10 percent of initial patient visits to their physician. Although blockages and infections are easy to diagnose, more than half of GI disorders involve abnormal functioning of the GI tract, where diagnosis entails subjective symptom-based questionnaires or objective but invasive, intermittent procedures in specialized centers. Although common procedures capture motor aspects of gastric function, which do not correlate with symptoms or treatment response, recent findings with invasive electrical recordings show that spatiotemporal patterns of the gastric slow wave are associated with diagnosis, symptoms, and treatment response. We here consider developing non-invasive approaches to extract this information. Using CT scans from human subjects, we simulate normative and disordered gastric surface electrical activity along with associated abdominal activity. We employ Bayesian inference to solve the ill-posed inverse problem of estimating gastric surface activity from cutaneous recordings. We utilize a prior distribution on the spatiotemporal activity pertaining to sparsity in the number of wavefronts on the stomach surface, and smooth evolution of these wavefronts across time. We implement an efficient procedure to construct the Bayes optimal estimate and demonstrate its superiority compared to other commonly used inverse methods, for both normal and disordered gastric activity. Region-specific wave direction information is calculated and consistent with the simulated normative and disordered cases. We apply these methods to cutaneous multi-electrode recordings of two human subjects with the same clinical description of motor function, but different diagnosis of underlying cause. Our method finds statistically significant wave propagation in all stomach regions for both subjects, anterograde activity throughout for the subject with diabetic gastroparesis, and retrograde activity in some regions for the subject with idiopathic gastroparesis. These findings provide a further step towards towards non-invasive phenotyping of gastric function and indicate the long-term potential for enabling population health opportunities with objective GI assessment.

Klíčová slova:

Computed axial tomography – Diabetes mellitus – Electroencephalography – Simulation and modeling – Stomach – Wavefronts – Wave propagation – Dipole moments


Zdroje

1. Brun R, Kuo B. Functional dyspepsia. Therapeutic advances in gastroenterology. 2010;3(3):145–164. doi: 10.1177/1756283X10362639 21180597

2. Gikas A, Triantafillidis JK. The role of primary care physicians in early diagnosis and treatment of chronic gastrointestinal diseases. Int J Gen Med. 2014;7:159–173. doi: 10.2147/IJGM.S58888 24648750

3. Heetun ZS, Quigley EMM. Gastroparesis and Parkinson’s disease: A systematic review. Parkinsonism Relat Disord. 2012;18(5):433–440. doi: 10.1016/j.parkreldis.2011.12.004 22209346

4. Horowitz M, Su YC, Rayner CK, Jones KL. Gastroparesis: prevalence, clinical significance and treatment. Canadian Journal of Gastroenterology and Hepatology. 2001;15(12):805–813.

5. Pasricha PJ, Colvin R, Yates K, Hasler WL, Abell TL, Unalp-Arida A, et al. Characteristics of patients with chronic unexplained nausea and vomiting and normal gastric emptying. Clin Gastroenterol Hepatol. 2011;9(7):567–76.e1–4. doi: 10.1016/j.cgh.2011.03.003 21397732

6. Janssen P, Harris MS, Jones M, Masaoka T, Farré R, Törnblom H, et al. The relation between symptom improvement and gastric emptying in the treatment of diabetic and idiopathic gastroparesis. Am J Gastroenterol. 2013;108(9):1382–1391. doi: 10.1038/ajg.2013.118 24005344

7. Corinaldesi R, Stanghellini V, Raiti C, Rea E, Salgemini R, Barbara L. Effect of chronic administration of cisapride on gastric emptying of a solid meal and on dyspeptic symptoms in patients with idiopathic gastroparesis. Gut. 1987;28(3):300–305. doi: 10.1136/gut.28.3.300 3552906

8. McCallum RW, Cynshi O, Investigative Team. Clinical trial: effect of mitemcinal (a motilin agonist) on gastric emptying in patients with gastroparesis—a randomized, multicentre, placebo-controlled study. Aliment Pharmacol Ther. 2007;26(8):1121–1130. doi: 10.1111/j.1365-2036.2007.03461.x 17894654

9. Barton ME, Otiker T, Johnson LV, Robertson DC, Dobbins RL, Parkman HP, et al. 70 A Randomized, Double-Blind, Placebo-Controlled Phase II Study (MOT114479) to Evaluate the Safety and Efficacy and Dose Response of 28 Days of Orally Administered Camicinal, a Motilin Receptor Agonist, in Diabetics With Gastroparesis. Gastroenterology. 2014;146(5):S–20. doi: 10.1016/S0016-5085(14)60070-6

10. Huizinga JD, Lammers WJ. Gut peristalsis is governed by a multitude of cooperating mechanisms. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2009;296(1):G1–G8. doi: 10.1152/ajpgi.90380.2008 18988693

11. O’Grady G, Du P, Cheng LK, Egbuji JU, Lammers WJ, Windsor JA, et al. Origin and propagation of human gastric slow-wave activity defined by high-resolution mapping. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2010;299(3):G585–G592. doi: 10.1152/ajpgi.00125.2010 20595620

12. O’Grady G, Angeli TR, Du P, Lahr C, Lammers WJEP, Windsor JA, et al. Abnormal initiation and conduction of slow-wave activity in gastroparesis, defined by high-resolution electrical mapping. Gastroenterology. 2012;143(3):589–98.e1–3. doi: 10.1053/j.gastro.2012.05.036 22643349

13. Angeli TR, Cheng LK, Du P, Wang THH, Bernard CE, Vannucchi MG, et al. Loss of Interstitial Cells of Cajal and Patterns of Gastric Dysrhythmia in Patients With Chronic Unexplained Nausea and Vomiting. Gastroenterology. 2015;149(1):56–66.e5. doi: 10.1053/j.gastro.2015.04.003 25863217

14. Abell TL, Johnson WD, Kedar A, Runnels JM, Thompson J, Weeks ES, et al. A double-masked, randomized, placebo-controlled trial of temporary endoscopic mucosal gastric electrical stimulation for gastroparesis. Gastrointestinal endoscopy. 2011;74(3):496–503. doi: 10.1016/j.gie.2011.05.022 21872708

15. Abstracts From the 8th Annual Meeting of The Canadian Neuromodulation Society September 26-28, 2014 Halifax, Nova Scotia, Canada. Neuromodulation: Technology at the Neural Interface. 2015;18(1):e1–e9. doi: 10.1111/ner.12262

16. Abell T, Kedar A, Stocker A, Beatty K, McElmurray L, Hughes M, et al. Gastroparesis syndromes: Response to electrical stimulation. Neurogastroenterology & Motility. 2019;31(3):e13534. doi: 10.1111/nmo.13534

17. Abell TL, Malagelada JR. Electrogastrography. Digestive diseases and sciences. 1988;33(8):982–992. doi: 10.1007/bf01535995 3292168

18. Mintchev MP, Kingma YJ, Bowes KL. Accuracy of cutaneous recordings of gastric electrical activity. Gastroenterology. 1993;104(5):1273–1280. doi: 10.1016/0016-5085(93)90334-9 8482441

19. Buist M, Cheng L, Sanders K, Pullan A. Multiscale modelling of human gastric electric activity: can the electrogastrogram detect functional electrical uncoupling? Experimental physiology. 2006;91(2):383–390. doi: 10.1113/expphysiol.2005.031021 16407476

20. Abid S, Lindberg G. Electrogastrography: poor correlation with antro-duodenal manometry and doubtful clinical usefulness in adults. World Journal of Gastroenterology: WJG. 2007;13(38):5101. 17876876

21. Gharibans AA, Kim S, Kunkel D, Coleman TP. High-Resolution Electrogastrogram: A Novel, Noninvasive Method for Determining Gastric Slow-Wave Direction and Speed. IEEE Transactions on Biomedical Engineering. 2017;64(4):807–815. doi: 10.1109/TBME.2016.2579310 27305668

22. Gharibans AA, Coleman TP, Mousa H, Kunkel DC. Spatial Patterns From High-Resolution Electrogastrography Correlate With Severity of Symptoms in Patients With Functional Dyspepsia and Gastroparesis. Clinical Gastroenterology and Hepatology. 2019. doi: 10.1016/j.cgh.2019.04.039 31009794

23. Cheng LK, O’Grady G, Du P, Egbuji JU, Windsor JA, Pullan AJ. Detailed measurements of gastric electrical activity and their implications on inverse solutions. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE; 2009. p. 1302–1305.

24. Ba D, Babadi B, Purdon PL, Brown EN. Robust spectrotemporal decomposition by iteratively reweighted least squares. Proceedings of the National Academy of Sciences. 2014;111(50):E5336–E5345. doi: 10.1073/pnas.1320637111

25. Schamberg G, Ba D, Coleman TP. A Modularized Efficient Framework for Non-Markov Time Series Estimation. IEEE Transactions on Signal Processing. 2018;66(12):3140–54. doi: 10.1109/TSP.2018.2793870

26. Bradshaw L, Irimia A, Sims J, Gallucci M, Palmer R, Richards W. Biomagnetic characterization of spatiotemporal parameters of the gastric slow wave. Neurogastroenterology & Motility. 2006;18(8):619–631. doi: 10.1111/j.1365-2982.2006.00794.x

27. Bradshaw L, Cheng L, Chung E, Obioha C, Erickson J, Gorman B, et al. Diabetic gastroparesis alters the biomagnetic signature of the gastric slow wave. Neurogastroenterology & Motility. 2016;28(6):837–848. doi: 10.1111/nmo.12780

28. Bradshaw L, Myers A, Redmond A, Wikswo J, Richards W. Biomagnetic detection of gastric electrical activity in normal and vagotomized rabbits. Neurogastroenterology & Motility. 2003;15(5):475–482. doi: 10.1046/j.1365-2982.2003.00432.x

29. Richards WO, Alan Bradshaw L, Staton DJ, Louis Garrard C, Liu F, Buchanan S, et al. Magnetoenterography (MENG). Digestive Diseases and Sciences. 1996;41(12):2293–2301. doi: 10.1007/bf02100117 9011432

30. Gharibans AA, Smarr BL, Kunkel DC, Kriegsfeld LJ, Mousa HM, Coleman TP. Artifact Rejection Methodology Enables Continuous, Noninvasive Measurement of Gastric Myoelectric Activity in Ambulatory Subjects. Sci Rep. 2018;8(1):5019. doi: 10.1038/s41598-018-23302-9 29568042

31. Kim JHK, Pullan AJ, Cheng LK. Reconstruction of multiple gastric electrical wave fronts using potential-based inverse methods. Phys Med Biol. 2012;57(16):5205–5219. doi: 10.1088/0031-9155/57/16/5205 22842812

32. Greensite F. The temporal prior in bioelectromagnetic source imaging problems. IEEE Transactions on Biomedical Engineering. 2003;50(10):1152–1159. doi: 10.1109/TBME.2003.817632 14560768

33. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging. 2012;30(9):1323–1341. doi: 10.1016/j.mri.2012.05.001 22770690

34. P Cignoni, M Callieri, M Corsini, M Dellepiane, F Ganovelli, G Ranzuglia. Meshlab: an Open-Source Mesh Processing Tool. In: Sixth Eurographics Italian Chapter Conference; 2008. p. 129–136.

35. O’Grady G, Du P, Cheng LK, Egbuji JU, Lammers WJEP, Windsor JA, et al. Origin and propagation of human gastric slow-wave activity defined by high-resolution mapping. Am J Physiol Gastrointest Liver Physiol. 2010;299(3):G585–92. doi: 10.1152/ajpgi.00125.2010 20595620

36. Smout A, Van der Schee E, Grashuis J. What is measured in electrogastrography? Digestive diseases and sciences. 1980;25(3):179–187. doi: 10.1007/bf01308136 7371462

37. Berry R, Miyagawa T, Paskaranandavadivel N, Du P, Angeli TR, Trew ML, et al. Functional physiology of the human terminal antrum defined by high-resolution electrical mapping and computational modeling. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2016;311(5):G895–G902. doi: 10.1152/ajpgi.00255.2016 27659422

38. Malmivuo J, Plonsey R. Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press, USA; 1995.

39. Van Veen BD, van Drongelen W, Yuchtman M, Suzuki A. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Transactions on Biomedical Engineering. 1997;44(9):867–880. doi: 10.1109/10.623056 9282479

40. Grech R, Cassar T, Muscat J, Camilleri KP, Fabri SG, Zervakis M, et al. Review on solving the inverse problem in EEG source analysis. Journal of neuroengineering and rehabilitation. 2008;5(1):25. doi: 10.1186/1743-0003-5-25 18990257

41. Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B (Methodological). 1996; p. 267–288. doi: 10.1111/j.2517-6161.1996.tb02080.x

42. Galka A, Yamashita O, Ozaki T, Biscay R, Valdés-Sosa P. A solution to the dynamical inverse problem of EEG generation using spatiotemporal Kalman filtering. Neuroimage. 2004;23(2):435–453. doi: 10.1016/j.neuroimage.2004.02.022 15488394

43. Kim JHK, Pullan AJ, Cheng LK. Reconstruction of multiple gastric electrical wave fronts using potential based inverse methods. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2011.

44. Sandino J, Gonzalez F, Mengersen K, Gaston KJ. UAVs and Machine Learning Revolutionising Invasive Grass and Vegetation Surveys in Remote Arid Lands. Sensors. 2018;18(2).

45. Duckworth D. PyKalman Version 0.9.2; 2012. https://pykalman.github.io/index.html#.

46. Yuan M, Lin Y. On the non-negative garrotte estimator. J R Stat Soc Series B Stat Methodol. 2007;69(2):143–161. doi: 10.1111/j.1467-9868.2007.00581.x

47. Ba D, Babadi B, Purdon PL, Brown EN. Robust spectrotemporal decomposition by iteratively reweighted least squares. Proc Natl Acad Sci U S A. 2014;111(50):E5336–45. doi: 10.1073/pnas.1320637111 25468968

48. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine learning. 2011;3(1):1–122. doi: 10.1561/2200000016

49. Rubino D, Robbins KA, Hatsopoulos NG. Propagating waves mediate information transfer in the motor cortex. Nature neuroscience. 2006;9(12):1549. doi: 10.1038/nn1802 17115042

50. Krishnasamy S, Abell TL. Diabetic gastroparesis: principles and current trends in management. Diabetes Therapy. 2018;9(1):1–42. doi: 10.1007/s13300-018-0454-9 29934758

51. O’Donovan D, Feinle-Bisset C, Jones K, Horowitz M. Idiopathic and diabetic gastroparesis. Current treatment options in gastroenterology. 2003;6(4):299–309. doi: 10.1007/s11938-003-0022-9 12846939

52. Pirondini E, Babadi B, Obregon-Henao G, Lamus C, Malik WQ, Hämäläinen MS, et al. Computationally Efficient Algorithms for Sparse, Dynamic Solutions to the EEG Source Localization Problem. IEEE Transactions on Biomedical Engineering. 2018;65(6):1359–1372. doi: 10.1109/TBME.2017.2739824 28920892

53. Battaglia E, Bassotti G, Bellone G, Dughera L, Serra AM, Chiusa L, et al. Loss of interstitial cells of Cajal network in severe idiopathic gastroparesis. World journal of gastroenterology: WJG. 2006;12(38):6172. doi: 10.3748/wjg.v12.i38.6172 17036390

54. Faussone-Pellegrini MS, Grover M, Pasricha PJ, Bernard CE, Lurken MS, Smyrk TC, et al. Ultrastructural differences between diabetic and idiopathic gastroparesis. Journal of cellular and molecular medicine. 2012;16(7):1573–1581. doi: 10.1111/j.1582-4934.2011.01451.x 21914127

55. Pallotta N, Cicala M, Frandina C, Corazziari E. Antro-pyloric contractile patterns and transpyloric flow after meal ingestion in humans. The American journal of gastroenterology. 1998;93(12):2513–2522. 9860417

56. Angeli TR, Quesada MJH, Du P, Paskaranandavadivel N, Amirapu S, Beyder A, et al. Gastric Ablation As a Novel Therapeutic Technique for Modulating Gastric Slow Wave Activity. Gastroenterology. 2016;150(4):S721. doi: 10.1016/S0016-5085(16)32459-3

57. McCallum RW, Chen JDZ, Lin Z, Schirmer BD, Williams RD, Ross RA. Gastric pacing improves emptying and symptoms in patients with gastroparesis. Gastroenterology. 1998;114(3):456–461. doi: 10.1016/s0016-5085(98)70528-1 9496935

58. Alighaleh S, Cheng LK, Angeli TR, Amiri M, Sathar S, O’Grady G, et al. A novel gastric pacing device to modulate slow waves and assessment by high-resolution mapping. IEEE Transactions on Biomedical Engineering. 2019. doi: 10.1109/TBME.2019.2896624 30735980

59. Sarosiek I, Davis B, Eichler E, McCallum RW. Surgical approaches to treatment of gastroparesis: gastric electrical stimulation, pyloroplasty, total gastrectomy and enteral feeding tubes. Gastroenterol Clin North Am. 2015;44(1):151–167. doi: 10.1016/j.gtc.2014.11.012 25667030

60. Alighaleh S, Angeli TR, Sathar S, O’Grady G, Cheng LK, Paskaranandavadivel N. Design and application of a novel gastric pacemaker. Conf Proc IEEE Eng Med Biol Soc. 2017;2017:2181–2184. doi: 10.1109/EMBC.2017.8037287 29060329

61. Abell T. Gastroparesis Syndromes: Pathophysiology and Response to Electrical Stimulation; 2017. https://clinicaltrials.gov/ct2/show/NCT03178370.

62. Alighaleh S, Angeli TR, Sathar S, O’Grady G, Cheng LK, Paskaranandavadivel N. 144—Real-Time Evaluation of a Novel Gastric Pacing Device with High-Resolution Mapping. Gastroenterology. 2018;154(6, Supplement 1):S–39. doi: 10.1016/S0016-5085(18)30602-4

63. Cochet H, Dubois R, Sacher F, Derval N, Sermesant M, Hocini M, et al. Cardiac arrythmias: multimodal assessment integrating body surface ECG mapping into cardiac imaging. Radiology. 2014;271(1):239–247. doi: 10.1148/radiol.13131331 24475841

64. Haissaguerre M, Hocini M, Shah AJ, Derval N, Sacher F, Jais P, et al. Noninvasive panoramic mapping of human atrial fibrillation mechanisms: a feasibility report. J Cardiovasc Electrophysiol. 2013;24(6):711–717. doi: 10.1111/jce.12075 23373588

65. Ferrua M, Singh R. Modeling the fluid dynamics in a human stomach to gain insight of food digestion. Journal of food science. 2010;75(7):R151–R162. doi: 10.1111/j.1750-3841.2010.01748.x 21535567

66. Kozu H, Kobayashi I, Nakajima M, Uemura K, Sato S, Ichikawa S. Analysis of flow phenomena in gastric contents induced by human gastric peristalsis using CFD. Food Biophysics. 2010;5(4):330–336. doi: 10.1007/s11483-010-9183-y

67. Kothapalli B. Electrogastrogram simulation using a three-dimensional model. Medical and Biological Engineering and Computing. 1993;31(5):482–486. doi: 10.1007/bf02441983 8295437

68. Calder S, O’Grady G, Cheng LK, Du P. Torso-Tank Validation of High-Resolution Electrogastrography (EGG): Forward Modelling, Methodology and Results. Annals of biomedical engineering. 2018;46:1183–1193. doi: 10.1007/s10439-018-2030-x 29704187

69. Bradshaw LA, Myers A, Wikswo JP, Richards WO. A spatio-temporal dipole simulation of gastrointestinal magnetic fields. IEEE Transactions on Biomedical Engineering. 2003;50(7):836–847. doi: 10.1109/TBME.2003.813549 12848351

70. Belloni A, Chernozhukov V, et al. Least squares after model selection in high-dimensional sparse models. Bernoulli. 2013;19(2):521–547. doi: 10.3150/11-BEJ410

71. Chételat D, Lederer J, Salmon J, et al. Optimal two-step prediction in regression. Electronic Journal of Statistics. 2017;11(1):2519–2546. doi: 10.1214/17-EJS1287


Článek vyšel v časopise

PLOS One


2019 Číslo 10