#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Projected urban growth in the southeastern USA puts small streams at risk


Autoři: Peter C. Van Metre aff001;  Ian R. Waite aff002;  Sharon Qi aff002;  Barbara Mahler aff001;  Adam Terando aff003;  Michael Wieczorek aff004;  Michael Meador aff005;  Paul Bradley aff006;  Celeste Journey aff006;  Travis Schmidt aff007;  Daren Carlisle aff008
Působiště autorů: United States Geological Survey, Austin, Texas, United States of America aff001;  United States Geological Survey, Portland, Oregon, United States of America aff002;  United States Geological Survey, Raleigh, North Carolina, United States of America aff003;  United States Geological Survey, Baltimore, Maryland, United States of America aff004;  United States Geological Survey, Reston, Virginia, United States of America aff005;  United States Geological Survey, Columbia, South Carolina, United States of America aff006;  United States Geological Survey, Fort Collins, Colorado, United States of America aff007;  United States Geological Survey, Lawrence, Kansas, United States of America aff008
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222714

Souhrn

Future land-use development has the potential to profoundly affect the health of aquatic ecosystems in the coming decades. We developed regression models predicting the loss of sensitive fish (R2 = 0.39) and macroinvertebrate (R2 = 0.64) taxa as a function of urban and agricultural land uses and applied them to projected urbanization of the rapidly urbanizing Piedmont ecoregion of the southeastern USA for 2030 and 2060. The regression models are based on a 2014 investigation of water quality and ecology of 75 wadeable streams across the region. Based on these projections, stream kilometers experiencing >50% loss of sensitive fish and invertebrate taxa will nearly quadruple to 19,500 and 38,950 km by 2060 (16 and 32% of small stream kilometers in the region), respectively. Uncertainty was assessed using the 20 and 80% probability of urbanization for the land-use projection model and using the 95% confidence intervals for the regression models. Adverse effects on stream health were linked to elevated concentrations of contaminants and nutrients, low dissolved oxygen, and streamflow alteration, all associated with urbanization. The results of this analysis provide a warning of potential risks from future urbanization and perhaps some guidance on how those risks might be mitigated.

Klíčová slova:

Contaminants – Forests – Freshwater fish – Invertebrates – Land use – Pesticides – Urban areas – Urban ecology


Zdroje

1. Development USDoHaU. The State of U.S. Cities 2000 Washington, DC: U.S. Department of Housing and Urban Development; 2000 [https://archives.hud.gov/reports/socrpt.pdf.

2. Falcone JA, Murphy JC, Sprague LA. Regional patterns of anthropogenic influences on streams and rivers in the conterminous United States, from the early 1970s to 2012. Journal of Land Use Science. 2019.

3. Terando AJ, Costanza J, Belyea C, Dunn RR, McKerrow A, Collazo JA. The Southern Megalopolis: Using the past to predict the future of urban sprawl in the Southeast U.S. PLOS one. 2014;9(11):1–8.

4. Clarke KC, Gaydos LJ. Loose-coupling a cellular automaton model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore. International Journal of Geographical Information Science. 1998;12:699–714. doi: 10.1080/136588198241617 12294536

5. Allan JD. Landscapes and Riverscapes: The influence of land use on stream ecosystems. Annu Rev Ecol Evol Syst. 2004;35:257–84.

6. Walsh CJ, Roy AH, Feminella JW, Cottingham PD, Groffman PM, Morgan RP II. The urban stream syndrome: current knowledge and the search for a cure. J North Am Benthol Soc. 2005;24:706–23.

7. Walsh CJ, Waller KA, Gehling R, MacNally R. Riverine invertebrate assemblages are degraded more by catchment urbanization than by riparian deforestation. Freshwater Ecology. 2007;52:574–87.

8. Cuffney TF, Brightbill RA, May JT, Waite IR. Responses of benthic macroinvertebrates to environmental changes associated with urbanization in nine metropolitan areas. Ecological Applications. 2010;20:1384–401. doi: 10.1890/08-1311.1 20666256

9. Utz RM, Eshleman KN, Hilderbrand RH. Variation in pysicochemical responses to urbanization in streams between two Mid-Atlantic physiographic regions. Ecological Applications. 2011;21(2):402–15. doi: 10.1890/09-1786.1 21563572

10. Pickett STA, Cadenasso ML, Grove JM, Boone CG, Groffman PM, Irwin E, et al. Urban ecological systems: Scientific foundations and a decade of progress. Journal of Environmental Management. 2011;92:331–62. doi: 10.1016/j.jenvman.2010.08.022 20965643

11. Coles JF, McMahon G, Bell AH, Brown LR, Fitzpatrick FA, Scudder Eikenberry BC, et al. Effects of urban development on stream ecosystems in nine metropolitan study areas across the United States. Reston, VA: U.S. Geological Survey Circular 1373; 2012. Contract No.: Circular 1373.

12. Bryant WL, Carlisle DM. The relative importance of physicochemical factors to spream biological condition in urbanizing basins: evidence from multimodel inference. Freshwater Science. 2012;31(1):154–66.

13. Brown LR, May JT, Rehn AC, Ode PR, Waite I, Kennen JG. Predicting biological condition in southern California streams. Landscape and Urban Planning. 2012;108:17–27.

14. Walsh CJ, B D.B., Burns MJ, Fletcher TD, Hale RL, Hoang LN, et al. Principles of urban stormwater management to protect stream ecosystems. Freshwater Science. 2016;35(1):398–411.

15. Journey CA, Van Metre PC, Bell AH, Garrett JD, Button DT, Nakagaki N, et al. Design and methods of the Southeast Stream Quality Assessment (SESQA), 2014. Reston, VA: U.S. Geological Survey; 2015. Contract No.: USGS OFR 2015–1095.

16. Waite IR, Munn M, Moran P, Konrad CP, Nowell L, Meador M, et al. Effects of urban multi-stressors on three biotic assemblages. Science of the Total Environment. 2019;660:1472–85. doi: 10.1016/j.scitotenv.2018.12.240 30743940

17. Dietze MC, Fox A, Beck-Johnson LM, Betancourt JL, Hooten MB, Jarnevich CS, et al. Iterative near-term ecological forecasting: Needs, opportunities, and challenges. PNAS. 2018;115(7):1424–32. doi: 10.1073/pnas.1710231115 29382745

18. Van Metre PC, Mahler BJ, Carlisle DM, Coles JF. The Midwest Stream Quality Assessment—Influences of human activities on streams. Report. Reston, VA; 2018. Report No.: 2017–3087.

19. Omernik JM. Ecoregions of the conterminous United States. Annals of the Association of American Geographers. 1987;77(1):118–25.

20. Bell AH, Olds HT. Southeast regional stream quality assessment ecological data. US Geological Survey data release. 2019, https://doi.org/10.5066/P97JHRX1.

21. Button DT, Waite IR, Konrad CP, Nowell LH, Schmidt TS, Journey CA, et al. Water-quality and stream-habitat metrics calculated for the National Water Quality Assessment Program’s Regional Stream Quality Assessment conducted in the southeast United States in support of ecological and habitat stressor models. US Geological Survey data release. 2019, https://doi.org/10.5066/P9L86OG8.

22. Homer C, Huang C, Yang L, Wylie B, Coan M. Development of a 2001 national land-cover database for the United States. Photogrammetric Engineering and Remote Sensing. 2004:832–40.

23. USCENSUS. U.S. Census Bureau Washington, DC: U.S. Census Bureau; 2007 [http://www.census.gov/geo/maps-data/data/tiger.html.

24. USGS. NLCD 2011 Land Cover (2011 Edition, amended 10/10/2014)—National Geospatial Data Asset (NGDA) Land Use Land Cover 2014 [http://www.mrlc.gov.

25. Homer CG, Dewitz JA, Yang L, Jin S, Danielson P, Xian G, et al. Completion of the 2011 National Land Cover Database for the conterminous United States-Representing a decade of land cover change information. Photogrammetric Engineering and Remote Sensing. 2015;81(5):345–54.

26. Nagy RC, Lockaby BG, Helms B, Kalin L, Stoeckel D. Water resources and land use and cover in a humid region—The southeastern United States. Journal of Environmental Quality. 2011;40:867–78. doi: 10.2134/jeq2010.0365 21546673

27. Harper MA, Batzer DP, Jackson CR, Fenoff R. Temporal and spatial variability of invertebrate communities in potential reference headwater streams of the Georgia Piedmont. Journal of Freshwater Biology. 2012;27(2):273–85.

28. McKay L, Bondelid T, Dewald T, Johnston J, Moore R, Rea A. NHDPlus Version 2: User Guide 2012 [https://s3.amazonaws.com/nhdplus/NHDPlusV21/Documentation/NHDPlusV2_User_Guide.pdf.

29. USGS. National Hydrography Dataset, High Resolution, (v2.10) Reston, VA: USGS; 2014 [http://nhd.usgs.gov.

30. Wieczorek ME, Jackson SE, Schwarz GE. Select Attributes for NHDPlus Version 2.1 Reach Catchments and Modified Network Routed Upstream Watersheds for the Conterminous United States. Reston, VA: U.S. Geological Survey; 2018.

31. De’ath G, Fabricius KE. Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology. 2000;81:3178–92.

32. De’ath G. Boosted trees for ecological modeling and prediction. Ecology. 2007;88:243–51. doi: 10.1890/0012-9658(2007)88[243:btfema]2.0.co;2 17489472

33. Elith J, Leathwick JR, Hastie T. A working guide to boosted regression trees. Journal of Animal Ecology. 2008;77:802–13. doi: 10.1111/j.1365-2656.2008.01390.x 18397250

34. Barbour MT, Gerritsen J, Snyder BD, Stribling JB. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish. Washington, D.C.: U.S. Environmental Protection Agency, Office of Water; 1999. Contract No.: EPA 841-B-99-002.

35. Warren ML, Angermeier PL, Burr BM, Haag WR. Decline of a diverse fish fauna: patterns of imperilment and protection in the southern United States. In: Benz GW, Collins DE, editors. Aquatic fauna in peril: the southern perspective. Decatur, Georgia, USA: Lenz Design and Communications; 1997. p. 105–64.

36. Villeneuve B, Souchon Y, Usseglio-Polatera P, Ferreol M, Valette L. Can we predict biological condition of stream ecosystems? A multi-stressor approach linking three biological indices to physico-chemistry, hydromorphology and land use. Ecological Indicators. 2015;48:88–98.

37. Gieswein A, Hering D, Feld CK. Additive effects prevail: The response of biota to multiple stressors in an intensively monitored watershed. Science of the Total Environment. 2017;593–594:27–35. doi: 10.1016/j.scitotenv.2017.03.116 28340479

38. Waite IR, Van Metre PC. Multistressor predictive models of invertebrate condition in the Corn Belt, USA. Freshwater Science. 2017;36(4):901–14.

39. Munn MD, Waite I, Konrad CP. Assessing the influence of multiple stressors on stream diatom metrics in the upper Midwest, USA. Ecological Indicators. 2018;85:1239–48.

40. Sohl TL, Wimberly MC, Radeloff VC, Theobald DM, Sleeter BM. Divergent projections of future land use in the United States arising from different models and scenarios. Ecological Modeling. 2016;337:281–97.

41. Rappaport J. Moving to nice weather. Regional Science and Urban Economics. 2007;37:375–98.

42. Weaver CP, Lempert RJ, Brown C, Hall JA, Revell D, Sarewitz D. Improving the contribution of climate model information to decision making: the value and demands of robust decision frameworks. Wiley Interdisciplinary Reviews: Climate Change. 2013;4:39–60.

43. Coles JF, McMahon G, Bell AH, Brown LR, Fitzpatrick FA, Scudder Eikenberry BC, et al. Effects of urban development on stream ecosystems in nine metropolitan study areas across the United States. Reston, VA.: U.S. Geological Survey; 2012. Contract No.: U.S. Geological Survey Circular 1373.

44. Dahm V, Hering D, Nemitz D, Graf W, Schmidt-Kloiber A, Leitner P, et al. Effects of physico-chemistry, land use and hydromorphology on three riverine organism groups: a comparative analysis with monitoring data from Germany and Austria. Hydrobiologia. 2013;704:389–415.

45. Schmidt TS, Van Metre PC, Carlisle DM. Linking the agricultural landscape of the Midwest to stream health with structural equation modeling. Environ Sci and Tech. 2019;53:452–62.

46. Nowell LH, Moran PW, Schmidt TS, Norman JE, Nakagaki N, Shoda ME, et al. Complex mixtures of dissolved pesticides show potential aquatic toxicity in a synoptic study of Midwestern U.S. streams. Science of The Total Environment. 2018;613–614:1469–88. doi: 10.1016/j.scitotenv.2017.06.156 28802893

47. Banaszkiewicz T. Evolution of pesticide use. In: Skibniewska KA, editor. Influence of the pesticide dump on the environment. 5. Olsztyn, Poland: University of Warmia and Mazury; 2010. p. 7–18.

48. Meador MR, Frey JW. Relative Importance of Water-Quality Stressors in Predicting Fish Community Responses in Midwestern Streams. JAWRA Journal of the American Water Resources Association. 2018:1–16.

49. Biggs J, von Fumetti S, Kelly-Quinn M. The importance of small waterbodies for biodiversity and ecosystem services: implications for policy makers. Hydrobiologia. 2017;793:3–39.

50. Kuemmerlen M, Schmalz B, Cai Q, Haase P, Fohrer N, Jahnig S. An attack on two fronts: predicting how changes in land use and climate affect the distribution of stream macroinvertebrates. Freshwater Biology. 2015;60:1443–58.

51. Hansen AJ, Piekielek N, Davis C, Haas J, Theobald DM, Gross JE, et al. Exposure of U.S. National Parks to land use and climate change 1900–2100. Ecological Applications. 2014;24(3):484–502. doi: 10.1890/13-0905.1 24834735

52. Nelson KC, Palmer MA, Pizzuto JE, Moglen GE, Angermeier PL, Hilderbrand RH, et al. Forecasting the combined effects of urbanization and climate change on stream ecosystems: from impacts to management options. Journal of Applied Ecology. 2009;46:154–63. doi: 10.1111/j.1365-2664.2008.01599.x 19536343

53. Knouft JH, Ficklin DL. The potential impacts of climate change on biodiversity of flowing freshwater systems. Annual Review of Ecology, Evolution, and Systematics. 2017;48:111–33.

54. Reid AJ, Carlson AK, Creed IF, Eliason EJ, Gell PA, Johnson PTJ, et al. Emerging threats and persistent conservation challenges for frewhwater biodiversity. Biological Reviews. 2019;94:849–73. doi: 10.1111/brv.12480 30467930


Článek vyšel v časopise

PLOS One


2019 Číslo 10
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

KOST
Koncepce osteologické péče pro gynekology a praktické lékaře
nový kurz
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Svět praktické medicíny 5/2023 (znalostní test z časopisu)

Imunopatologie? … a co my s tím???
Autoři: doc. MUDr. Helena Lahoda Brodská, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#