Structure establishment of three-dimensional (3D) cell culture printing model for bladder cancer

Autoři: Myeong Joo Kim aff001;  Byung Hoon Chi aff001;  James J. Yoo aff002;  Young Min Ju aff002;  Young Mi Whang aff001;  In Ho Chang aff001
Působiště autorů: Department of Urology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea aff001;  Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, United States of America aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223689



Two-dimensional (2D) cell culture is a valuable method for cell-based research but can provide unpredictable, misleading data about in vivo responses. In this study, we created a three-dimensional (3D) cell culture environment to mimic tumor characteristics and cell-cell interactions to better characterize the tumor formation response to chemotherapy.

Materials and methods

We fabricated the 3D cell culture samples using a 3D cell bio printer and the bladder cancer cell line 5637. T24 cells were used for 2D cell culture. Then, rapamycin and Bacillus Calmette-Guérin (BCG) were used to examine their cancer inhibition effects using the two bladder cancer cell lines. Cell-cell interaction was measured by measuring e-cadherin and n-cadherin secreted via the epithelial-mesenchymal transition (EMT).


We constructed a 3D cell scaffold using gelatin methacryloyl (GelMA) and compared cell survival in 3D and 2D cell cultures. 3D cell cultures showed higher cancer cell proliferation rates than 2D cell cultures, and the 3D cell culture environment showed higher cell-to-cell interactions through the secretion of E-cadherin and N-cadherin. Assessment of the effects of drugs for bladder cancer such as rapamycin and BCG showed that the effect in the 2D cell culture environment was more exaggerated than that in the 3D cell culture environment.


We fabricated 3D scaffolds with bladder cancer cells using a 3D bio printer, and the 3D scaffolds were similar to bladder cancer tissue. This technique can be used to create a cancer cell-like environment for a drug screening platform.

Klíčová slova:

Bladder cancer – Cancer treatment – Cell cultures – Cross-linking – Cytokines – Drug interactions – Phosphorylation – Secretion


1. Bhadriraju K, Chen CS. Engineering cellular microenvironments to improve cell-based drug testing. Drug Discovery Today. 2002;7(11):612–20. doi: 10.1016/s1359-6446(02)02273-0 12047872

2. Breslin S, O’Driscoll L. Three-dimensional cell culture: the missing link in drug discovery. Drug Discovery Today. 2013;18(5):240–9.

3. Birgersdotter A, Sandberg R, Ernberg I. Gene expression perturbation in vitro—A growing case for three-dimensional (3D) culture systems. Seminars in Cancer Biology. 2005;15(5):405–12. doi: 10.1016/j.semcancer.2005.06.009 16055341

4. Goetz MP, Rae JM, Suman VJ, Safgren SL, Ames MM, Visscher DW, et al. Pharmacogenetics of Tamoxifen Biotransformation Is Associated With Clinical Outcomes of Efficacy and Hot Flashes. Journal of Clinical Oncology. 2005;23(36):9312–8. doi: 10.1200/JCO.2005.03.3266 16361630

5. Riedl A, Schlederer M, Pudelko K, Stadler M, Walter S, Unterleuthner D, et al. Comparison of cancer cells in 2D vs 3D culture reveals differences in AKT–mTOR–S6K signaling and drug responses. Journal of Cell Science. 2017;130(1):203. doi: 10.1242/jcs.188102 27663511

6. Ong LJY, Islam A, DasGupta R, Iyer NG, Leo HL, Toh YC. A 3D printed microfluidic perfusion device for multicellular spheroid cultures. Biofabrication. 2017;9(4):045005. doi: 10.1088/1758-5090/aa8858 28837043.

7. Guertin DA, Sabatini DM. An expanding role for mTOR in cancer. Trends in Molecular Medicine. 2005;11(8):353–61. doi: 10.1016/j.molmed.2005.06.007 16002336

8. Meric-Bernstam F, Gonzalez-Angulo AM. Targeting the mTOR signaling network for cancer therapy. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2009;27(13):2278–87. Epub 03/30. doi: 10.1200/JCO.2008.20.0766 19332717.

9. Redelman-Sidi G, Glickman MS, Bochner BH. The mechanism of action of BCG therapy for bladder cancer—a current perspective. Nature Reviews Urology. 2014;11:153. doi: 10.1038/nrurol.2014.15 24492433

10. Maruf M, Brancato SJ, Agarwal PK. Nonmuscle invasive bladder cancer: a primer on immunotherapy. Cancer biology & medicine. 2016;13(2):194–205. doi: 10.20892/j.issn.2095-3941.2016.0020 27458527.

11. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149(2):274–93. doi: 10.1016/j.cell.2012.03.017 22500797.

12. Li J, Kim SG, Blenis J. Rapamycin: one drug, many effects. Cell metabolism. 2014;19(3):373–9. Epub 02/06. doi: 10.1016/j.cmet.2014.01.001 24508508.

13. Bevers RFM, Kurth KH, Schamhart DHJ. Role of urothelial cells in BCG immunotherapy for superficial bladder cancer. British journal of cancer. 2004;91(4):607–12. Epub 07/13. doi: 10.1038/sj.bjc.6602026 15266312.

14. Edmondson R, Broglie JJ, Adcock AF, Yang L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay and drug development technologies. 2014;12(4):207–18. doi: 10.1089/adt.2014.573 24831787.

15. Kuo C-T, Chiang C-L, Yun-Ju Huang R, Lee H, Wo AM. Configurable 2D and 3D spheroid tissue cultures on bioengineered surfaces with acquisition of epithelial–mesenchymal transition characteristics. Npg Asia Materials. 2012;4:e27. doi: 10.1038/am.2012.50

16. Maltman DJ, Przyborski SA. Developments in three-dimensional cell culture technology aimed at improving the accuracy of in vitro analyses. Biochemical Society transactions. 2010;38(4):1072–5. Epub 2010/07/28. doi: 10.1042/BST0381072 20659006.

17. Legnani L, Compostella F, Sansone F, Toma L. Cone Calix[4]arenes with Orientable Glycosylthioureido Groups at the Upper Rim: An In-Depth Analysis of Their Symmetry Properties. The Journal of organic chemistry. 2015;80(15):7412–8. doi: 10.1021/acs.joc.5b00878 26153830.

18. Pepelanova I, Kruppa K, Scheper T, Lavrentieva A. Gelatin-Methacryloyl (GelMA) Hydrogels with Defined Degree of Functionalization as a Versatile Toolkit for 3D Cell Culture and Extrusion Bioprinting. Bioengineering (Basel, Switzerland). 2018;5(3):55. doi: 10.3390/bioengineering5030055 30022000.

19. Annabi N, Rana D, Shirzaei Sani E, Portillo-Lara R, Gifford JL, Fares MM, et al. Engineering a sprayable and elastic hydrogel adhesive with antimicrobial properties for wound healing. Biomaterials. 2017;139:229–43. Epub 2017/06/06. doi: 10.1016/j.biomaterials.2017.05.011 28579065.

20. Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015;73:254–71. Epub 08/28. doi: 10.1016/j.biomaterials.2015.08.045 26414409.

21. Shin H, Olsen BD, Khademhosseini A. The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules. Biomaterials. 2012;33(11):3143–52. Epub 2012/01/24. doi: 10.1016/j.biomaterials.2011.12.050 22265786; PubMed Central PMCID: PMC3282165.

22. Frols S, Gordon PM, Panlilio MA, Duggin IG, Bell SD, Sensen CW, et al. Response of the hyperthermophilic archaeon Sulfolobus solfataricus to UV damage. Journal of bacteriology. 2007;189(23):8708–18. doi: 10.1128/JB.01016-07 17905990; PubMed Central PMCID: PMC2168930.

23. Huh D, Hamilton GA, Ingber DE. From 3D cell culture to organs-on-chips. Trends in cell biology. 2011;21(12):745–54. Epub 10/25. doi: 10.1016/j.tcb.2011.09.005 22033488.

24. Kim JB. Three-dimensional tissue culture models in cancer biology. Seminars in Cancer Biology. 2005;15(5):365–77. doi: 10.1016/j.semcancer.2005.05.002 15975824

25. Chitcholtan K, Sykes PH, Evans JJ. The resistance of intracellular mediators to doxorubicin and cisplatin are distinct in 3D and 2D endometrial cancer. Journal of translational medicine. 2012;10:38–. doi: 10.1186/1479-5876-10-10

26. Gurski LA, Petrelli NJ, Jia X, Farach-Carson MC. 3D Matrices for Anti-Cancer Drug Testing and Development. Oncology Issues. 2010;25(1):20–5. doi: 10.1080/10463356.2010.11883480

27. Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes & development. 2004;18(16):1926–45. Epub 2004/08/18. doi: 10.1101/gad.1212704 15314020.

28. Swiech L, Perycz M, Malik A, Jaworski J. Role of mTOR in physiology and pathology of the nervous system. Biochimica et biophysica acta. 2008;1784(1):116–32. Epub 2007/10/05. doi: 10.1016/j.bbapap.2007.08.015 17913600.

29. Whang YM, Jin SB, Park SI, Chang IH. MEK inhibition enhances efficacy of bacillus Calmette-Guerin on bladder cancer cells by reducing release of Toll-like receptor 2-activated antimicrobial peptides. Oncotarget. 2017;8(32):53168–79. Epub 2017/09/09. doi: 10.18632/oncotarget.18230 28881802; PubMed Central PMCID: PMC5581101.

30. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70. Epub 2000/01/27. doi: 10.1016/s0092-8674(00)81683-9 10647931.

31. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. Epub 2011/03/08. doi: 10.1016/j.cell.2011.02.013 21376230.

32. Knowlton S, Onal S, Yu CH, Zhao JJ, Tasoglu S. Bioprinting for cancer research. Trends Biotechnol. 2015;33(9):504–13. Epub 2015/07/29. doi: 10.1016/j.tibtech.2015.06.007 26216543.

33. Zhao Y, Yao R, Ouyang L, Ding H, Zhang T, Zhang K, et al. Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication. 2014;6(3):035001. Epub 2014/04/12. doi: 10.1088/1758-5082/6/3/035001 24722236.

34. Marie PJ, Hay E, Modrowski D, Revollo L, Mbalaviele G, Civitelli R. Cadherin-mediated cell-cell adhesion and signaling in the skeleton. Calcified tissue international. 2014;94(1):46–54. Epub 2013/05/10. doi: 10.1007/s00223-013-9733-7 23657489; PubMed Central PMCID: PMC4272239.

35. Tepass U, Truong K, Godt D, Ikura M, Peifer M. Cadherins in embryonic and neural morphogenesis. Nature reviews Molecular cell biology. 2000;1(2):91–100. Epub 2001/03/20. doi: 10.1038/35040042 11253370.

36. Taneyhill LA, Schiffmacher AT. Should I stay or should I go? Cadherin function and regulation in the neural crest. Genesis (New York, NY: 2000). 2017;55(6). Epub 2017/03/03. doi: 10.1002/dvg.23028 28253541; PubMed Central PMCID: PMC5468476.

37. Kang Y, He W, Tulley S, Gupta GP, Serganova I, Chen CR, et al. Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci U S A. 2005;102(39):13909–14. Epub 2005/09/21. doi: 10.1073/pnas.0506517102 16172383; PubMed Central PMCID: PMC1236573.

38. Katsuno Y, Lamouille S, Derynck R. TGF-beta signaling and epithelial-mesenchymal transition in cancer progression. Current opinion in oncology. 2013;25(1):76–84. Epub 2012/12/01. doi: 10.1097/CCO.0b013e32835b6371 23197193.

39. Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Developmental cell. 2008;14(6):818–29. Epub 2008/06/10. doi: 10.1016/j.devcel.2008.05.009 18539112.

40. Tofilon PJ, Buckley N, Deen DF. Effect of cell-cell interactions on drug sensitivity and growth of drug-sensitive and -resistant tumor cells in spheroids. Science. 1984;226(4676):862. doi: 10.1126/science.6494917 6494917

Článek vyšel v časopise


2019 Číslo 10