Regulation of nitrogen availability results in changes in grain protein content and grain storage subproteomes in barley (Hordeum vulgare L.)

Autoři: Baojian Guo aff001;  Dongfang Li aff001;  Sen Lin aff001;  Ying Li aff001;  Shuang Wang aff001;  Chao Lv aff001;  Rugen Xu aff001
Působiště autorů: Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Barley Research Institution of Yangzhou University, Yang aff001
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223831


Barley grain protein content (GPC) is an important quality factor that determines grain end-use value. The synthesis and accumulation of grain protein is highly dependent on the availability of nitrogen fertilizer, and it is important to understand the underlying control mechanisms of this. In the current study, the GPC and protein composition of mature grain seeds from Yangsimai 3 and Naso Nijo barley cultivars were analyzed. Grain storage subproteomes (albumin, glubulin, hordein and glutelin) were compared in the cultivars grown in both low and high nitrogen level conditions. The GPC of mature grain was significantly higher in Yangsimai 3 than Naso Nijo following nitrogen treatment. Albumin, hordein and glutelin content were increased in Yangsimai, while only hordein content was increased in Naso Nijo. Large-scale analysis of the grain storage subproteome revealed 152 differentially expressed protein spots on 2-DE gels with a pH range of 3–10. Among these, 42 and 66 protein spots were successfully identified by tandem mass spectrometry in Yangsimai 3 and Naso Nijo grown in low and high nitrogen conditions. The identified proteins were further grouped into thirteen categories according to their biological functions. This detailed analysis of grain subproteomes provides information on how barley GPC may be controlled by nitrogen supply.

Klíčová slova:

Albumins – Barley – Nutrient and storage proteins – Protein expression – Protein extraction – Proteomics – Globulins – Tandem mass spectrometry


1. Purugganan MD, Fuller DQ. The nature of selection during plant domestication. Nature. 2009; 457: 843–848. doi: 10.1038/nature07895 19212403

2. Mascher M, Schuenemann VJ, Davidovich U, Marom N, Himmelbach A, Hübner S, et al. Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication history of barley. Nature Genetics. 2016; 48: 1089. doi: 10.1038/ng.3611 27428749

3. Qi JC, Zhang GP, Zhou MX. Protein and hordein content in barley seeds as affected by nitrogen level and their relationship to beta-amylase activity. J Cereal Sci. 2006; 43: 102–107. doi: 10.1016/j.jcs.2005.08.005

4. Bishop LR. The composition and quantitative estimation of barley proteins. J. lnst. Brew. 1928; 35: 101–118. doi: 10.1002/j.2050-0416.1927.tb05117.x

5. Bathgate GN. Quality requirements for malting. Aspects of Applied Biology. 1987; 15: 18–31.

6. Hill K, Horváth-Szanics E, Hajós G, Kiss É. Surface and interfacial properties of water-soluble wheat proteins. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2008; 319: 180–187.

7. Shewry PR, Halford NG. Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot. 2002; 53: 947–958. doi: 10.1093/jexbot/53.370.947 11912237

8. Görg A, Postel W, Baumer M, Weiss W. Two–dimensional polyacrylamide gel electrophoresis, with immobilized pH gradients in the first dimension, of barley seed proteins: Discrimination of cultivars with different malting grades. Electrophoresis. 1992a; 13: 192–203. doi: 10.1002/elps.1150130141 1628598

9. Görg A, Postel W, Weiss W. Detection of polypeptides and amylase isoenzyme modifications related to malting quality during malting process of barley by two‐dimensional electrophoresis and isoelectric focusing with immobilized pH gradients. Electrophoresis. 1992b. 13: 759–770. doi: 10.1002/elps.11501301166 1281094

10. Østergaard O, Melchior S, Roepstorff P, Svensson B. Initial proteome analysis of mature barley seeds and malt. Proteomics. 2002; 2: 733–739. doi: 10.1002/1615-9861(200206)2:6<733::AID-PROT733>3.0.CO;2-E 12112856

11. Finnie C, Melchior S, Roepstorff P, Svensson B. Proteome analysis of grain filling and seed maturation in barley. Plant Physiol. 2002; 129: 1308–1319. doi: 10.1104/pp.003681 12114584

12. Schmidt D, Gaziola SA, Boaretto LF, Azevedo RA. Proteomic analysis of mature barley grains from C-hordein antisense lines. Phytochemistry. 2016; 125: 14–26. doi: 10.1016/j.phytochem.2016.03.001 26976333

13. Guo BJ, Luan HY, Lin S, Lv C, Zhang XZ, Xu RG. Comparative proteomic analysis of two barley cultivars (Hordeum vulgare L.) with contrasting grain protein content. Front Plant Sci. 2016; 7: 542. doi: 10.3389/fpls.2016.00542 27200019

14. Dai Z, Plessis A, Vincent J, Duchateau N, Besson A, Dardevet M, et al. Transcriptional and metabolic alternations rebalance wheat grain storage protein accumulation under variable nitrogen and sulfur supply. Plant J. 2015; 83: 326–343. doi: 10.1111/tpj.12881 25996785

15. Quan X, Zeng J, Ye L, Chen G, Han Z, Shah JM, et al. Transcriptome profiling analysis for two Tibetan wild barley genotypes in responses to low nitrogen. BMC Plant Biol. 2016; 16: 30. doi: 10.1186/s12870-016-0721-8 26817455

16. Bonnot T, Bancel E, Alvarez D, Davanture M, Boudet J, Pailloux M, et al. Grain subproteome responses to nitrogen and sulfur supply in diploid wheat Triticum monococcum ssp. monococcum. Plant J. 2017; 91: 894–910. doi: 10.1111/tpj.13615 28628250

17. Shewry PR, Ellis JR S, Pratt HM, Miflin BJ. A comparison of methods for the extraction and separation of hordein fractions from 29 barley varieties. J Sci Food Agr. 1978; 29: 433–441. doi: 10.1002/jsfa.2740290505

18. Vensel WH, Tanaka CK, Altenbach SB. Protein composition of wheat gluten polymer fractions determined by quantitative two-dimensional gel electrophoresis and tandem mass spectrometry. Proteome Sci. 2014; 12: 1. doi: 10.1186/1477-5956-12-1

19. Kjeldahl C. A new method for the determination of nitrogen in organic matter. Z Anal Chem. 1883; 22: 366–382. doi: 10.1007/BF02514058

20. Sun HY, Cao FB, Wang NB, Zhang M, Ahmed IM, Zhang GP, et al. Differences in grain ultrastructure, phytochemical and proteomic profiles between the two contrasting grain Cd-accumulation barley genotypes. PLoS One. 2013; 8: e79158. doi: 10.1371/journal.pone.0079158 24260165

21. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72: 248–254. doi: 10.1006/abio.1976.9999 942051

22. Mahjourimajd S, Taylor J, Sznajder B, Timmins A, Shahinnia F, Rengel Z, et al. Genetic basis for variation in wheat grain yield in response to varying nitrogen application. PLoS ONE. 2016; 11: e0159374. doi: 10.1371/journal.pone.0159374 27459317

23. Lam HM, Coschigano KT, Oliveira IC, Melo-Oliveira R, Coruzzi GM. The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Rev. Plant Biol. 1996; 47: 569–593. doi: 10.1016/S0141-0296(98)00031-5

24. Kirkman MA, Shewry PR, Miflin BJ. The effect of nitrogen nutrition on the lysine content and protein composition of barley seeds. J Sci Food Agr. 1982; 33: 115–127. doi: 10.1002/jsfa.2740330203

25. Bahrman N, Aurélia Gouy, Devienne-Barret F, Hirel B, Vedele F, Gouis JL. Differential change in root protein patterns of two wheat varieties under high and low nitrogen nutrition levels. Plant Sci. 2005; 168: 81–87. doi: 10.1016/j.plantsci.2004.07.035

26. Bahrman N, Gouis JL, Negroni L, Amilhat L, Jaminon O. Differential protein expression assessed by two-dimensional gel electrophoresis for two wheat varieties grown at four nitrogen levels. Proteomics. 2004; 4: 709–719. doi: 10.1002/pmic.200300571 14997493

27. Flæte NES, Hollung K, Ruud L, Sogn T, Færgestad EM, Skarpeid HJ, et al. Combined nitrogen and sulphur fertilisation and its effect on wheat quality and protein composition measured by SE-FPLC and proteomics. J Cereal Sci. 2005; 41: 357–369. doi: 10.1016/j.jcs.2005.01.003

28. MØLLER AL, Pedas PAI, Andersen B, Svensson B, Schjoerring JK, Finnie C Responses of barley root and shoot proteomes to long‐term nitrogen deficiency, short‐term nitrogen starvation and ammonium. Plant Cell Environ. 2011; 34: 2024–2037. doi: 10.1111/j.1365-3040.2011.02396.x 21736591

29. Sirover MA. Subcellular dynamics of multifunctional protein regulation: mechanisms of GAPDH intracellular translocation. J Cell Biochem. 2012; 113: 2193–2200. doi: 10.1002/jcb.24113 22388977

30. Maceda K, Yokoi S, Kamada K, Kaminura M. Foam stability and physicochemical properties of beer. J Am Soc Brew Chem. 1991; 49: 14–18.

31. Jin Z, Li X M, Gao F, Sun JY, Mu YW, Lu J. Proteomic analysis of differences in barley (Hordeum vulgare) malts with distinct filterability by DIGE. J Proteomics. 2013; 93: 93–106. doi: 10.1016/j.jprot.2013.05.038 23751817

32. Shewry PR, Franklin J, Parmar S, Smith SJ, Miflin BJ. The effects of sulphur starvation on the amino acid and protein compositions of barley grain. J Cereal Sci. 1983; 1: 21–31. doi: 10.1016/S0733-5210(83)80005-8

33. Shewry PR, Kreis M, Parmar S, Lew JL, Kasarda DD. Identification of γ-type hordeins in barley. Febs Lett. 1985; 190: 61–64. doi: 10.1016/0014-5793(85)80427-0

34. Shewry PR, Napier JA, Tatham AS. Seed storage proteins: structures and biosynthesis. Plant Cell. 1995; 7: 945–956. doi: 10.1105/tpc.7.7.945 7640527

35. Howard KA, Gayler KR, Eagles HA, Halloran GM. The relationship between D hordein and malting quality in barley. J Cereal Sci. 1996; 24: 47–53. doi: 10.1006/jcrs.1996.0036

36. Molina-Cano JL, Polo JP, Romera E, Araus JL, Zarco J, Swanston JS. Relationships between barley hordeins and malting quality in a mutant of cv. Triumph I. Genotype by environment interaction of hordein content. J Cereal Sci. 2001; 34: 285–294. doi: 10.1006/jcrs.2001.0415

37. Distelfeld A, Korol A, Dubcovsky J, Uauy C, Blake T, Fahima T. Colinearity between the barley grain protein content (GPC) QTL on chromosome arm 6HS and the wheat Gpc-B1 region. Mol Breeding. 2008; 22: 25–38. doi: 10.1007/s11032-007-9153-3

38. Cai S, Yu G, Chen X, Huang Y, Jiang X, Zhang GP, et al. Grain protein content variation and its association analysis in barley. BMC Plant Biol. 2013; 13: 35. doi: 10.1186/1471-2229-13-35 23452582

39. Emebiri LC, Moody DB, Panozzo JF, Chalmers KJ, Kretschmer JM, Ablett GA. Identification of QTLs associated with variations in grain protein concentration in two-row barley. Aust J Agr Res. 2003; 54: 1211–1221. doi: 10.1071/ar03006

40. Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, et al. A chromosome conformation capture ordered sequence of the barley genome. Nature. 2017; 544: 427–433. doi: 10.1038/nature22043 28447635

Článek vyšel v časopise


2019 Číslo 10