Early mobilization of critically ill patients in the intensive care unit: A systematic review and meta-analysis

Autoři: Lan Zhang aff001;  Weishu Hu aff002;  Zhiyou Cai aff002;  Jihong Liu aff001;  Jianmei Wu aff002;  Yangmin Deng aff002;  Keping Yu aff002;  Xiaohua Chen aff002;  Li Zhu aff002;  Jingxi Ma aff002;  Yan Qin aff001
Působiště autorů: Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China aff001;  Department of Neurology, Chongqing General Hospital, Chongqing, P.R. China aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0223185



Physical therapy can prevent functional impairments and improve the quality of life of patients after hospital discharge. However, the effect of early mobilization on patients with a critical illness remains unclear. This study was performed to assess the evidence available regarding the effect of early mobilization on critically ill patients in the intensive care unit (ICU).


Electronic databases were searched from their inception to March 21, 2019. Randomized controlled trials (RCTs) comprising critically ill patients who received early mobilization were included. The methodological quality and risk of bias of each eligible trial were assessed using the Cochrane Collaboration tool. Data were extracted using a standard collection form each included study, and processed using the Mantel-Haenszel (M-H) or inverse-variance (I-V) test in the STATA v12.0 statistical software.


A total of 1,898 records were screened. Twenty-three RCTs comprising 2,308 critically ill patients were ultimately included. Early mobilization decreased the incidence of ICU-acquired weakness (ICU-AW) at hospital discharge (three studies, 190 patients, relative risk (RR): 0.60, 95% confidence interval (CI) [0.40, 0.90]; p = 0.013, I2 = 0.0%), increased the number of patients who were able to stand (one study, 50 patients, 90% vs. 62%, p = 0.02), increased the number of ventilator-free days (six studies, 745 patients, standardized mean difference (SMD): 0.17, 95% CI [0.02, 0.31]; p = 0.023, I2 = 35.5%) during hospitalization, increased the distance the patient was able to walk unassisted (one study, 104 patients, 33.4 (0–91.4) meters vs. 0 (0–30.4) meters, p = 0.004) at hospital discharge, and increased the discharged-to-home rate (seven studies, 793 patients, RR: 1.16, 95% CI [1.00, 1.34]; p = 0.046). The mortality (28-day, ICU and hospital) and adverse event rates were moderately increased by early mobilization, but the differences were statistically non-significant. However, due to the substantial heterogeneity among the included studies, and the low quality of the evidence, the results of this study should be interpreted with caution. Publication bias was not identified.


Early mobilization appears to decrease the incidence of ICU-AW, improve the functional capacity, and increase the number of ventilator-free days and the discharged-to-home rate for patients with a critical illness in the ICU setting.

Klíčová slova:

Adverse events – Death rates – Hospitals – Intensive care units – Physiotherapy – Strength training – Systematic reviews


1. Puthucheary ZA, Rawal J, McPhail M, Connolly B, Ratnayake G, Chan P, et al. Acute skeletal muscle wasting in critical illness. JAMA. 2013; 310(15): 1591–1600. doi: 10.1001/jama.2013.278481 24108501

2. Baldwin MR, Reid MC, Westlake AA, Rowe JW, Granieri EC, Wunsch H, et al. The feasibility of measuring frailty to predict disability and mortality in older medical intensive care unit survivors. J Crit Care. 2014; 29(3): 401–408. doi: 10.1016/j.jcrc.2013.12.019 24559575

3. Denehy L, Lanphere J, Needham DM. Ten reasons why ICU patients should be mobilized early. Intensive Care Med. 2017; 43(1): 86–90. doi: 10.1007/s00134-016-4513-2 27562244

4. Jolley SE, Bunnell AE, Hough CL. ICU-Acquired Weakness. Chest. 2016; 150(5): 1129–1140. doi: 10.1016/j.chest.2016.03.045 27063347

5. de Jonghe B, Lacherade J-C, Sharshar T, Outin H. Intensive care unit-acquired weakness: risk factors and prevention. Critical care medicine. 2009; 37(10 Suppl): S309–315. doi: 10.1097/CCM.0b013e3181b6e64c 20046115

6. Campellone JV, Lacomis D, Kramer DJ, Van Cott AC, Giuliani MJ. Acute myopathy after liver transplantation. Neurology. 1998; 50(1): 46–53. doi: 10.1212/wnl.50.1.46 9443456

7. Fan E, Dowdy DW, Colantuoni E, Mendez-Tellez PA, Sevransky JE, Shanholtz C, et al. Physical complications in acute lung injury survivors: a two-year longitudinal prospective study. Crit Care Med. 2014; 42(4): 849–859. doi: 10.1097/CCM.0000000000000040 24247473

8. Friedrich O, Reid MB, Van den Berghe G, Vanhorebeek I, Hermans G, Rich MM, et al. The Sick and the Weak: Neuropathies/Myopathies in the Critically Ill. Physiol Rev. 2015; 95(3): 1025–1109. doi: 10.1152/physrev.00028.2014 26133937

9. Li Z, Peng X, Zhu B, Zhang Y, Xi X. Active mobilization for mechanically ventilated patients: A systematic review. Archives of Physical Medicine and Rehabilitation. 2013; 94(3): 551–561. doi: 10.1016/j.apmr.2012.10.023 23127305

10. Kayambu G, Boots R, Paratz J. Physical therapy for the critically ill in the ICU: a systematic review and meta-analysis. Crit Care Med. 2013; 41(6): 1543–1554. doi: 10.1097/CCM.0b013e31827ca637 23528802

11. Pinheiro AR, Christofoletti G. Motor physical therapy in hospitalized patients in an intensive care unit: a systematic review. Revista Brasileira de terapia intensiva. 2012; 24(2): 188–196. doi: 10.1590/S0103-507X2012000200016 23917769

12. Verceles AC, Wells CL, Sorkin JD, Terrin ML, Beans J, Jenkins T, et al. A multimodal rehabilitation program for patients with ICU acquired weakness improves ventilator weaning and discharge home. J Crit Care. 2018; 47: 204–210. doi: 10.1016/j.jcrc.2018.07.006 30025227

13. Berry MJ, Morris PE. Early Exercise Rehabilitation of Muscle Weakness in Acute Respiratory Failure Patients. Exercise and Sport Sciences Reviews. 2013; 41(4): 208–215. doi: 10.1097/JES.0b013e3182a4e67c 23873130

14. Santos PMR, Ricci NA, Suster EAB, Paisani DM, Chiavegato LD. Effects of early mobilisation in patients after cardiac surgery: a systematic review. Physiotherapy. 2017; 103(1): 1–12. doi: 10.1016/j.physio.2016.08.003 27931870

15. Nydahl P, Sricharoenchai T, Chandra S, Kundt FS, Huang M, Fischill M, et al. Safety of Patient Mobilization and Rehabilitation in the Intensive Care Unit. Systematic Review with Meta-Analysis. Ann Am Thorac Soc. 2017; 14(5): 766–777. doi: 10.1513/AnnalsATS.201611-843SR 28231030

16. Gensheng Zhang KZ, Wei Cui1, Yucai Hong, Zhongheng Zhang. The effect of early mobilization for critical ill patients requiring mechanical ventilation a systematic review and meta-analysis. Journal of Emergency and Critical Care Medicine. 2018; 2(9): 1–13. doi: 10.21037/jeccm.2018.01.04

17. Castro-Avila AC, Seron P, Fan E, Gaete M, Mickan S. Effect of Early Rehabilitation during Intensive Care Unit Stay on Functional Status: Systematic Review and Meta-Analysis. PLoS One. 2015; 10(7): e0130722. doi: 10.1371/journal.pone.0130722 26132803

18. Laurent H, Aubreton S, Richard R, Gorce Y, Caron E, Vallat A, et al. Systematic review of early exercise in intensive care: A qualitative approach. Anaesthesia Critical Care & Pain Medicine. 2016; 35(2): 133–149. doi: 10.1016/j.accpm.2015.06.014 26655865

19. Doiron KA, Hoffmann TC, Beller EM. Early intervention (mobilization or active exercise) for critically ill adults in the intensive care unit. Cochrane Database Syst Rev. 2018; 27(3):CD010754. doi: 10.1002/14651858.CD010754.pub2 29582429

20. Devlin JW, Skrobik Y, Gelinas C, Needham DM, Slooter AJC, Pandharipande PP, et al. Clinical Practice Guidelines for the Prevention and Management of Pain, Agitation/Sedation, Delirium, Immobility, and Sleep Disruption in Adult Patients in the ICU. Crit Care Med. 2018; 46(9): e825–e873. doi: 10.1097/CCM.0000000000003299 30113379

21. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009; 6(7): e1000097. doi: 10.1371/journal.pmed.1000097 19621072

22. Clarissa C, Salisbury L, Rodgers S, Kean S. Early mobilisation in mechanically ventilated patients: a systematic integrative review of definitions and activities. J Intensive Care. 2019; 7(3):1–19. doi: 10.1186/s40560-018-0355-z 30680218

23. Hodgson CL, Berney S, Harrold M, Saxena M, Bellomo R. Clinical review: Early patient mobilization in the ICU. Critical Care. 2013; 17(1): 207. doi: 10.1186/cc11820 23672747

24. Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ. 2011; 343(d5928):1–9. doi: 10.1136/bmj.d5928 22008217

25. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002; 21(11): 1539–1558. doi: 10.1002/sim.1186 12111919

26. Kho ME, Molloy AJ, Clarke FJ, Reid JC, Herridge MS, Karachi T, et al. Multicentre pilot randomised clinical trial of early in-bed cycle ergometry with ventilated patients. BMJ Open Respiratory Research. 2019; 6(1): e000383. doi: 10.1136/bmjresp-2018-000383 30956804

27. Sarfati C, Moore A, Pilorge C, Amaru P, Mendialdua P, Rodet E, et al. Efficacy of early passive tilting in minimizing ICU-acquired weakness: A randomized controlled trial. Journal of Critical Care. 2018; 46(031): 37–43. doi: 10.1016/j.jcrc.2018.03.031 29660670

28. McWilliams D, Jones C, Atkins G, Hodson J, Whitehouse T, Veenith T, et al. Earlier and enhanced rehabilitation of mechanically ventilated patients in critical care: A feasibility randomised controlled trial. J Crit Care. 2018; 44(001): 407–412. doi: 10.1016/j.jcrc.2018.01.001 29331668

29. Hickmann CE, Castanares-Zapatero D, Deldicque L, Van den Bergh P, Caty G, Robert A, et al. Impact of Very Early Physical Therapy During Septic Shock on Skeletal Muscle: A Randomized Controlled Trial. Critical Care Medicine. 2018; 46(9): 1436–1443. doi: 10.1097/CCM.0000000000003263 29957714

30. Fossat G, Baudin F, Courtes L, Bobet S, Dupont A, Bretagnol A, et al. Effect of In-Bed Leg Cycling and Electrical Stimulation of the Quadriceps on Global Muscle Strength in Critically Ill Adults: A Randomized Clinical Trial. JAMA. 2018; 320(4): 368–378. doi: 10.1001/jama.2018.9592 30043066

31. Eggmann S, Verra ML, Luder G, Takala J, Jakob SM. Effects of early, combined endurance and resistance training in mechanically ventilated, critically ill patients: A randomised controlled trial. PLoS ONE. 2018; 13(11): e0207428. doi: 10.1371/journal.pone.0207428 30427933

32. Maffei P, Wiramus S, Bensoussan L, Bienvenu L, Haddad E, Morange S, et al. Intensive Early Rehabilitation in the Intensive Care Unit for Liver Transplant Recipients: A Randomized Controlled Trial. Arch Phys Med Rehabil. 2017; 98(8): 1518–1525. doi: 10.1016/j.apmr.2017.01.028 28279659

33. Machado ADS, Pires-Neto RC, Carvalho MTX, Soares JC, Cardoso DM, Albuquerque IM. Effects that passive cycling exercise have on muscle strength, duration of mechanical ventilation, and length of hospital stay in critically ill patients: a randomized clinical trial. Jornal brasileiro de pneumologia. 2017; 43 (2): 134–139. doi: 10.1590/S1806-37562016000000170 28538781

34. Schaller SJ, Anstey M, Blobner M, Edrich T, Grabitz SD, Gradwohl-Matis I, et al. Early, goal-directed mobilisation in the surgical intensive care unit: a randomised controlled trial. Lancet. 2016; 388(10052): 1377–1388. doi: 10.1016/S0140-6736(16)31637-3 27707496

35. Moss M, Nordon-Craft A, Malone D, Van Pelt D, Frankel SK, Warner ML, et al. A Randomized Trial of an Intensive Physical Therapy Program for Patients with Acute Respiratory Failure. American Journal of Respiratory and Critical Care Medicine. 2016; 193(10): 1101–1110. doi: 10.1164/rccm.201505-1039OC 26651376

36. Morris PE, Berry MJ, Files DC, Thompson JC, Hauser J, Flores L, et al. Standardized Rehabilitation and Hospital Length of Stay Among Patients With Acute Respiratory Failure: A Randomized Clinical Trial. JAMA. 2016; 315(24): 2694–2702. doi: 10.1001/jama.2016.7201 27367766

37. Hodgson CL, Bailey M, Bellomo R, Berney S, Buhr H, Denehy L, et al. A Binational Multicenter Pilot Feasibility Randomized Controlled Trial of Early Goal-Directed Mobilization in the ICU. Crit Care Med. 2016; 44(6): 1145–1152. doi: 10.1097/CCM.0000000000001643 26968024

38. Dong Z, Yu B, Zhang Q, Pei H, Xing J, Fang W, et al. Early Rehabilitation Therapy Is Beneficial for Patients With Prolonged Mechanical Ventilation After Coronary Artery Bypass Surgery. International heart journal. 2016; 57 (2):241–246. doi: 10.1536/ihj.15-316 26973269

39. Coutinho WM, Santos LJd, Fernandes J, Vieira SRR, Forgiarini Junior LA, Dias AS. Efeito agudo da utilização do cicloergômetro durante atendimento fisioterapêutico em pacientes críticos ventilados mecanicamente. Fisioterapia e Pesquisa. 2016; 23(3): 278–283. doi: 10.1590/1809-2950/15549123032016

40. Kayambu G, Boots R, Paratz J. Early physical rehabilitation in intensive care patients with sepsis syndromes: a pilot randomised controlled trial. Intensive Care Med. 2015; 41(5): 865–874. doi: 10.1007/s00134-015-3763-8 25851383

41. Dong Z-H, Yu B-X, Sun Y-B, Fang W, Li L. Effects of early rehabilitation therapy on patients with mechanical ventilation. World journal of emergency medicine. 2014; 5(1): 48–52. doi: 10.5847/wjem.j.1920-8642.2014.01.008 25215147

42. Brummel NE, Girard TD, Ely EW, Pandharipande PP, Morandi A, Hughes CG, et al. Feasibility and safety of early combined cognitive and physical therapy for critically ill medical and surgical patients: The Activity and Cognitive Therapy in ICU (ACT-ICU) trial. Intensive Care Medicine. 2014; 40(3): 370–379. doi: 10.1007/s00134-013-3136-0 24257969

43. Denehy L, Skinner EH, Edbrooke L, Haines K, Warrillow S, Hawthorne G, et al. Exercise rehabilitation for patients with critical illness: A randomized controlled trial with 12 months of follow-up. Critical Care. 2013; 17(4): R156. doi: 10.1186/cc12835 23883525

44. Dantas CM, Silva PF, Siqueira FH, Pinto RM, Matias S, Maciel C, et al. Influence of early mobilization on respiratory and peripheral muscle strength in critically ill patients. Rev Bras Ter Intensiva. 2012; 24(2): 173–178. doi: 10.1590/S0103-507X2012000200013 23917766

45. Chang MY, Chang LY, Huang YC, Lin KM, Cheng CH. Chair-sitting exercise intervention does not improve respiratory muscle function in mechanically ventilated intensive care unit patients. Respir Care. 2011; 56(10): 1533–1538. doi: 10.4187/respcare.00938 21513602

46. Schweickert WD, Pohlman MC, Pohlman AS, Nigos C, Pawlik AJ, Esbrook CL, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet. 2009; 373(9678): 1874–1882. doi: 10.1016/S0140-6736(09)60658-9 19446324

47. Burtin C, Clerckx B, Robbeets C, Ferdinande P, Langer D, Troosters T, et al. Early exercise in critically ill patients enhances short-term functional recovery. Crit Care Med. 2009; 37(9): 2499–2505. doi: 10.1097/CCM.0b013e3181a38937 19623052

48. Nava S. Rehabilitation of patients admitted to a respiratory intensive care unit. Archives of physical medicine and rehabilitation. 1998; 79 (7):849–854. doi: 10.1016/s0003-9993(98)90369-0 9685104

49. Ahmed S, Kupfer Y, Tessler S. Paresis following mechanical ventilation. JAMA. 2003; 289(13): 1634–1635. doi: 10.1001/jama.289.13.1634-a 12672727

50. Farhan H, Moreno-Duarte I, Latronico N, Zafonte R, Eikermann M. Acquired Muscle Weakness in the Surgical Intensive Care Unit: Nosology, Epidemiology, Diagnosis, and Prevention. Anesthesiology. 2016; 124(1): 207–234. doi: 10.1097/ALN.0000000000000874 26445385

51. Hermans G, Van den Berghe G. Clinical review: intensive care unit acquired weakness. Crit Care. 2015; 19(1): 274. doi: 10.1186/s13054-015-0993-7 26242743

52. Hermans G, Van Mechelen H, Bruyninckx F, Vanhullebusch T, Clerckx B, Meersseman P, et al. Predictive value for weakness and 1-year mortality of screening electrophysiology tests in the ICU. Intensive Care Med. 2015; 41(12): 2138–2148. doi: 10.1007/s00134-015-3979-7 26266842

53. De Jonghe B, Sharshar T, Lefaucheur JP, Authier FJ, Durand-Zaleski I, Boussarsar M, et al. Paresis acquired in the intensive care unit: a prospective multicenter study. JAMA. 2002; 288(22): 2859–2867. doi: 10.1001/jama.288.22.2859 12472328

54. Taekema DG, Gussekloo J, Maier AB, Westendorp RG, de Craen AJ. Handgrip strength as a predictor of functional, psychological and social health. A prospective population-based study among the oldest old. Age Ageing. 2010; 39(3): 331–337. doi: 10.1093/ageing/afq022 20219767

55. Ling CH, Taekema D, de Craen AJ, Gussekloo J, Westendorp RG, Maier AB. Handgrip strength and mortality in the oldest old population: the Leiden 85-plus study. CMAJ. 2010; 182(5): 429–435. doi: 10.1503/cmaj.091278 20142372

56. Ali NA, O'Brien JM Jr., Hoffmann SP, Phillips G, Garland A, Finley JC, et al. Acquired weakness, handgrip strength, and mortality in critically ill patients. Am J Respir Crit Care Med. 2008; 178(3): 261–268. doi: 10.1164/rccm.200712-1829OC 18511703

57. Norman K, Stobaus N, Kulka K, Schulzke J. Effect of inflammation on handgrip strength in the non-critically ill is independent from age, gender and body composition. Eur J Clin Nutr. 2014; 68(2): 155–158. doi: 10.1038/ejcn.2013.261 24327120

58. Pina IL, Apstein CS, Balady GJ, Belardinelli R, Chaitman BR, Duscha BD, et al. Exercise and heart failure: A statement from the American Heart Association Committee on exercise, rehabilitation, and prevention. Circulation. 2003; 107(8): 1210–1225. doi: 10.1161/01.cir.0000055013.92097.40 12615804

59. Chiang LL, Wang LY, Wu CP, Wu HD, Wu YT. Effects of physical training on functional status in patients with prolonged mechanical ventilation. Phys Ther. 2006; 86(9): 1271–1281. doi: 10.2522/ptj.20050036 16959675

60. Zanotti E, Felicetti G, Maini M, Fracchia C. Peripheral muscle strength training in bed-bound patients with COPD receiving mechanical ventilation: effect of electrical stimulation. Chest. 2003; 124(1): 292–296. doi: 10.1378/chest.124.1.292 12853536

61. Yosef-Brauner O, Adi N, Ben Shahar T, Yehezkel E, Carmeli E. Effect of physical therapy on muscle strength, respiratory muscles and functional parameters in patients with intensive care unit-acquired weakness. Clinical respiratory journal. 2015; 9 (1):1–6. doi: 10.1111/crj.12091 24345055

62. Adler J, Malone D. Early mobilization in the intensive care unit: a systematic review. Cardiopulm Phys Ther J. 2012; 23(1): 5–13. 22807649

63. Calvo-Ayala E, Khan BA, Farber MO, Ely EW, Boustani MA. Interventions to improve the physical function of ICU survivors: a systematic review. Chest. 2013; 144(5): 1469–1480. doi: 10.1378/chest.13-0779 23949645

64. Gosselink R, Bott J, Johnson M, Dean E, Nava S, Norrenberg M, et al. Physiotherapy for adult patients with critical illness: recommendations of the European Respiratory Society and European Society of Intensive Care Medicine Task Force on Physiotherapy for Critically Ill Patients. Intensive Care Med. 2008; 34(7): 1188–1199. doi: 10.1007/s00134-008-1026-7 18283429

Článek vyšel v časopise


2019 Číslo 10
Nejčtenější tento týden