Comparing growth patterns of three species: Similarities and differences


Autoři: Norbert Brunner aff001;  Manfred Kühleitner aff001;  Werner Georg Nowak aff001;  Katharina Renner-Martin aff001;  Klaus Scheicher aff001
Působiště autorů: University of Natural Resources and Life Sciences, Department of Integrative Biology and Biodiversity Research, Vienna, Austria aff001
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224168

Souhrn

Quantitative studies of the growth of dinosaurs have made comparisons with modern animals possible. Therefore, it is meaningful to ask, if extinct dinosaurs grew faster than modern animals, e.g. birds (modern dinosaurs) and reptiles. However, past studies relied on only a few growth models. If these models were false, what about the conclusions? This paper fits growth data to a more comprehensive class of models, defined by the von Bertalanffy-Pütter (BP) differential equation. Applied to data about Tenontosaurus tilletti, Alligator mississippiensis and the Athens Canadian Random Bred strain of Gallus gallus domesticus the best fitting growth curves did barely differ, if they were rescaled for size and lifespan. A difference could be discerned, if time was rescaled for the age at the inception point (maximal growth) or if the percentual growth was compared.

Klíčová slova:

Birds – Curve fitting – Chickens – Poultry – Reptiles – Dinosaurs – Basal metabolic rate measurement – Chicken models


Zdroje

1. Kahm M, Hasenbrink G, Lichtenberg-Frate H, Ludwig J, and Kschischo M. (2010) Fitting Biological Growth Curves with R. Journal of Statistical Software 33: 1–21.

2. Aggrey SE. (2002) Comparison of Three Nonlinear and Spline Regression Models for Describing Chicken Growth Curves. Poultry Sciences 81: 1782–1788.

3. Renner-Martin K, Kühleitner M, Brunner N, Hagmüller W. (2016) AIC-Based Selection of Growth Models: The Case of Piglets from Organic Farming. Open Journal of Modelling and Simulation 4: 17–23. doi: 10.4236/ojmsi.2016.42002

4. Renner-Martin K, Brunner N, Kühleitner M, Nowak WG, and Scheicher K. (2018) Optimal and near-optimal exponent-pairs for the Bertalanffy-Pütter growth model. PeerJ 6: e5973. doi: 10.7717/peerj.5973 30505634

5. Lee AH, Huttenlocker AK, Padian K, and Woodward HN. (2013) Analysis of Growth Rates. In Padian K. and Lamm E.T. (eds.) Bone histology of Fossil Tetrapods: Advancing Methods, Analysis and Interpretation. UCLA Press: Berkeley, USA, pp. 217–251.

6. Erickson GM. (2014) On Dinosaur Growth. Annual Review of Earth and Planetary Sciences 42: 675–697.

7. West GB, Brown JH, Enquist BJ. (2001) A general model for ontogenetic growth. Nature 413: 628–631. doi: 10.1038/35098076 11675785

8. Pütter A. (1920) Studien über physiologische Ähnlichkeit. VI. Wachstumsähnlichkeiten. Pflügers Archiv für die Gesamte Physiologie des Menschen und der Tiere 180: 298–340.

9. Brody S. (1945) Bioenergetics and growth. Hafner Publ. Comp.: New York, NY, USA.

10. von Bertalanffy L. (1949) Problems of organic growth. Nature 163: 156–158. doi: 10.1038/163156a0 18107581

11. Verhulst PF. (1838) Notice sur la loi que la population suit dans son accroissement, CorrespondenceMathematique et Physique (Ghent) 10: 113–121.

12. Ohnishi S, Yamakawa T, Akamine T. (2014) On the analytical solution for the Pütter-Bertalanffy growth equation. Journal of Theoretical Biology 343: 174–177. doi: 10.1016/j.jtbi.2013.10.017 24211257

13. von Bertalanffy L. (1957) Quantitative laws in metabolism and growth. Quarterly Reviews of Biology 32: 217–231.

14. Richards FJ. (1959) A Flexible Growth Function for Empirical Use. Journal of Experimental Botany 10: 290–300.

15. Pauly D. (1981) The relationship between gill surface area and growth performance in fish: a generalization of von Bertalanffy’s theory of growth. Reports on Marine Research (Berichte der deutschen wissenschaftlichen Kommission für Meeresforschung) 28:25–282.

16. Gompertz B. (1832) On the Nature of the Function Expressive of the Law of Human Mortality, and on a New Mode of Determining the Value of Life Contingencies. Philos. Trans. R. Soc. London 123: 513–585.

17. Marusic M, Bajzer Z. (1993) Generalized two-parameter equations of growth. Journal of Mathematical Analysis and Applications 179: 446–462.

18. Lee AH, and Werning S. (2008) Sexual maturity in growing dinosaurs does not fit reptilian growth models. Proceedings of the National Academy of Sciences USA 105: 582–587.

19. Rootes WL, Chabreck RH, Wright VL, Brown BW, and Hess TJ. (1991) Growth Rates of American Alligators in Estuarine and Palustrine Wetlands in Louisiana. Estuaries 14: 489–494.

20. Brunner N, Kühleitner M, Nowak WG, Renner-Martin K, Scheicher K. (2019) Growth Patterns of birds, dinosaurs and reptiles: Are differences real or apparent? Preprint (at BioRxiv). Published online: doi: 10.1101/597260v1

21. Renner-Martin K, Brunner N, Kühleitner M, Nowak WG, Scheicher K. (2019) Best-fitting growth curves of the von Bertalanffy-Pütter type. Poultry Science 98 (9): 3587–3592, doi: 10.3382/ps/pez122 30895317

22. Calder WA. III. (1985) Size, Function, and Life History. Harvard Univ. Press: Cambridge, USA.

23. Pauly D, and Cheung WWL. (2017) Sound physiological knowledge and principles in modeling shrinking of fishes under climate change. Global Change Biology. Published online: doi: 10.1111/gcb.13831 28833977

24. Viboud C, Simonsen L, Chowell G.(2016) A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks. Epidemics 15: 27–37. doi: 10.1016/j.epidem.2016.01.002 27266847


Článek vyšel v časopise

PLOS One


2019 Číslo 10